623
Views
23
CrossRef citations to date
0
Altmetric
Original Research

Himalayan honey loaded iron oxide nanoparticles: synthesis, characterization and study of antioxidant and antimicrobial activities

, , , , , & show all
Pages 3533-3541 | Published online: 15 May 2019

References

  • McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108:652–659. doi:10.1016/S0002-9343(00)00412-510856414
  • Alam MN, Bristi NJ, Rafiquzzaman M. Review on in-vivo and in-vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21:143–152. doi:10.1016/j.jsps.2012.05.00224936134
  • Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–126. doi:10.4103/0973-7847.7090222228951
  • Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf. 2011;10:221–247. doi:10.1111/j.1541-4337.2011.00156.x
  • Noori S, Faiza S, Mohammed A, et al. Effects of natural honey on polymicrobial culture of various human pathogens. Arch Med Sci. 2014;10:246–250.24904656
  • Barras A, Mezzetti A, Richard A. Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int J Pharm. 2009;379(2):270–277. doi:10.1016/j.ijpharm.2009.05.05419501139
  • Weiss J, Decker EA, McClements DJ, et al. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys. 2008;3(2):146–154. doi:10.1007/s11483-008-9065-8
  • Watkins R, Wu L, Zhang C, et al. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015;10:6055–6074. doi:10.2147/IJN.S9216226451111
  • Celia C, Trapasso E, Locatelli M, et al. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf B Biointerfaces. 2013;112:548–553. doi:10.1016/j.colsurfb.2013.05.03224099646
  • Abdelwahab SI, Sheikh BY, Taha MME, et al. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomedicine. 2013;8:2163–2172. doi:10.2147/IJN.S4410823818776
  • Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1–2):71–80. doi:10.1016/j.drudis.2011.09.00921959306
  • Naksuriya O, Okonogi S, Schiffelers RM, et al. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–3383. doi:10.1016/j.biomaterials.2014.01.02624439402
  • Leonarduzzi G, Testa G, Sottero B, Gamba P, Poli G. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr Med Chem. 2010;17(1):74–95. doi:10.2174/09298671078995776019941477
  • Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci. 2015;221:60–76.25999266
  • Bonifacio BV, Silva PB, Ramos MA, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15.
  • Muthukumar H, Chandrasekaran NI, Mohammed SN, et al. Iron oxide nano-material: physicochemical traits and in vitro antibacterial propensity against multidrug resistant bacteria. J Ind Eng Chem. 2017;45:121–130.
  • Neupane BP, Malla KP, Kaundinnyayana A, et al. Antioxidant properties of honey from different altitudes of Nepal himalayas. Pol J Food Nutr Sci. 2015;65(2):87–91. doi:10.1515/pjfns-2015-0024
  • Wang Z, Zhao L, Yang P, et al. Water soluble amorphous iron oxide nanoparticles synthesized by quickly pestling and nontoxic method at room temperature as MRI contrast agents. Chem Eng J. 2014;235:231–235. doi:10.1016/j.cej.2013.09.042
  • Wu CL, He H, Gao HJ, et al. Synthesis of Fe3O4-SiO2 polymer nanoparticles for controlled drug release. Sci China Chem. 2010;53(3):514–518. doi:10.1007/s11426-010-0084-1
  • Takao T, Watanabe N, Sakata KA, Simple screening method for anti-oxidants and isolation of several anti-oxidants produced by marine bacteria from fish and shellfish. Biosci Biotechnol Biochem. 1994;58:1780–1783. doi:10.1271/bbb.58.1780
  • Kumarasamy Y, Byres M, Cox PJ, et al. Screening seeds of some Scottish plants for free-radical scavenging activity. Phytother Res. 2007;21:615–621. doi:10.1002/ptr.212917357975
  • Perez C, Pauli M, Bezerque P. An antibiotic assay by the agar well diffusion method. Acta Biol Exp. 1990;15:13–115.
  • Cheong SP, Ferguson KW, Feindel IF, et al. Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Ed. 2011;50:4206–4209. doi:10.1002/anie.201100562
  • Racuciu M, Creanga DE, Arinei A. Citric-acid coated magnetite nanoparticles for biological applications. Eur Phys J E. 2006;21:17–121. doi:10.1140/epje/i2006-10051-y
  • Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412–422. doi:10.1007/s13197-011-0251-123572765
  • Bertoncelj J, Dobersek U, Jamnik M, et al. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007;105:822–828. doi:10.1016/j.foodchem.2007.01.060
  • Socha R, Juszczak L, Pietrzyk S, Fortuna T. Antioxidant activity and phenolic composition of herb honeys. Food Chem. 2009;113:568–574. doi:10.1016/j.foodchem.2008.08.029
  • Bhattacharya K, Gogoi B, Buragohain AK, Deb P. Fe2O3/C nanocomposites having distinctive antioxidant activity and hemolysis prevention efficiency. Mater Sci Eng C. 2014;42:595–600. doi:10.1016/j.msec.2014.05.062
  • Kurian GA, Meyyappan A, Banu SA. One step synthesis of iron oxide nanoparticles via chemical and green route–an effective comparison. Int J Pharm Pharm Sci. 2015;7(1):70–74.
  • Namvar F, Mohamed R. Biomedical application of green biosynthesis magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Int J Chem Mol Eng. 2016;3(1):7–11.
  • Ferreira IC, Aires E, Barreira JC, Estevinho LM. Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chem. 2009;114:438–1443. doi:10.1016/j.foodchem.2008.11.028
  • Liberato MCTC, Morais SM, Siqueira SMC, et al. Phenolic content and antioxidant and antiacetylcholinesterase properties of honeys from different floral origins. J Med Food. 2011;14:658–663. doi:10.1089/jmf.2010.009721554131
  • Guittat L, Alberti P, Rosu F, et al. Interaction of cryptolepine and neocryptolepine with unusual DNA structures. Biochem. 2003;85:535–541. doi:10.1016/S0300-9084(03)00035-X
  • Tran N, Mir A, Mallik D, et al. Bacterial effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine. 2010;5:277–283.20463943
  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, et al. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberose: antibacterial properties and their applications in photocatalytic degradation. J Photochem Photobiol B. 2019;192:74–82. doi:10.1016/j.jphotobiol.2018.12.02530685586
  • Suganya D, Rajan MR, Ramesh R. Green synthesis of iron oxide nanoparticles from leaf extract of Passiflora foetida and its antibacterial activity. Int J Curr Res. 2016;8(11):42081–42085.
  • Ahmad S, Farrukh MA, Khan M, et al. Synthesis of iron oxide–tin oxide nanoparticles and evaluation of their activities against different bacterial strains. Can ChemTrans. 2014;2(2):122–133.