195
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Gold nanoparticle uptake is enhanced by estradiol in MCF-7 breast cancer cells

, , , , , & show all
Pages 2705-2718 | Published online: 01 May 2019

References

  • Soto-Perez-de-Celis E, Chavarri-Guerra Y. National and regional breast cancer incidence and mortality trends in Mexico 2001-2011: analysis of a population-based database. Cancer Epidemiol. 2016;41:24–33. doi:10.1016/j.canep.2016.01.00726797674
  • Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev. 2015;3(2):111–122. doi:10.1515/ntrev-2013-001326082884
  • Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19(7):1979. doi:10.3390/ijms19071979
  • Gao Y, Shen JK, Milane L, Hornicek FJ, Amiji MM, Duan Z. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance. Curr Med Chem. 2015;22(11):1335–1347.25666804
  • Sharma B, Crist RM, Adiseshaiah PP. Nanotechnology as a delivery tool for precision cancer therapies. Aaps J. 2017;19(6):1632–1642. doi:10.1208/s12248-017-0152-y29019032
  • Huang Q, Wang Y, Chen X, et al. Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nanotheranostics. 2018;2(1):21–41. doi:10.7150/ntno.2209129291161
  • Beik J, Khademi S, Attaran N, et al. A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: folate-conjugated gold nanoparticles. Curr Med Chem. 2017;24(39):4399–4416. doi:10.2174/092986732466617081015491728799495
  • Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–113. doi:10.1259/bjr/5944883322010024
  • Guo J, Rahme K, He Y, Li -L-L, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine. 2017;12:6131–6152. doi:10.2147/IJN.S14077228883725
  • Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Theranostics. 2015;5(4):357–370. doi:10.7150/thno.1065725699096
  • Wu D, Si M, Xue H-Y, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine. 2017;12:5879–5892. doi:10.2147/IJN.S12343728860754
  • Candido NM, de Melo MT, Franchi LP, et al. Combining photodynamic therapy and chemotherapy: improving breast cancer treatment with nanotechnology. J Biomed Nanotechnol. 2018;14(5):994–1008. doi:10.1166/jbn.2018.255829883569
  • Tanaka T, Decuzzi P, Cristofanilli M, et al. Nanotechnology for breast cancer therapy. Biomed Microdevices. 2009;11(1):49–63. doi:10.1007/s10544-008-9209-018663578
  • Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? Nanoscale. 2018;10(25):11719–11731. doi:10.1039/c8nr02796j29917035
  • Hussain Z, Khan JA, Murtaza S. Nanotechnology: an Emerging Therapeutic Option for Breast Cancer. Crit Rev Eukaryot Gene Expr. 2018;28(2):163– 175. doi:10.1615/CritRevEukaryotGeneExpr.201802277130055543
  • Russell LM, Dawidczyk CM, Searson PC. Quantitative evaluation of the enhanced permeability and retention (EPR) effect. Methods Mol Biol Clifton NJ. 2017;1530:247–254. doi:10.1007/978-1-4939-6646-2_14
  • Bi Y, Hao F, Yan G, Teng L, Lee RJ, Xie J. Actively targeted nanoparticles for drug delivery to tumor. Curr Drug Metab. 2016;17(8):763–782.27335116
  • Lara-Cruz C, Jiménez-Salazar JE, Ramón-Gallegos E, Damian-Matsumura P, Batina N. Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles. Int J Nanomedicine. 2016;11:5149–5161. doi:10.2147/IJN.S10876827785020
  • Glazer ES, Zhu C, Hamir AN, Borne A, Thompson CS, Curley SA. Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology. 2011;5(4):459–468. doi:10.3109/17435390.2010.51602620854190
  • Hwang WS, Sim SJ. A strategy for the ultrasensitive detection of cancer biomarkers based on the LSPR response of a single AuNP. J Nanosci Nanotechnol. 2011;11(7):5651–5656.22121586
  • Teixeira RAR, Lataliza AAB, Raposo NRB, Costa LAS, Sant’Ana AC. Insights on the transport of tamoxifen by gold nanoparticles for MCF-7 breast cancer cells based on SERS spectroscopy. Colloids Surf B Biointerfaces. 2018;170:712–717. doi:10.1016/j.colsurfb.2018.07.00129990878
  • Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347(1):46–53. doi:10.1016/j.canlet.2014.02.00624556077
  • Wang S-H, Lee C-W, Chiou A, Wei P-K. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology. 2010;8:33. doi:10.1186/1477-3155-8-3321167077
  • Coradeghini R, Gioria S, García CP, et al. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett. 2013;217(3):205–216. doi:10.1016/j.toxlet.2012.11.02223246733
  • Tan G, Onur MA. Cellular localization and biological effects of 20nm-gold nanoparticles. J Biomed Mater Res A. 2018;106(6):1708–1721. doi:10.1002/jbm.a.3637329468810
  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C Mater Biol Appl. 2015;53:298–309. doi:10.1016/j.msec.2015.04.04826042718
  • Kang JH, Ko YT. Lipid-coated gold nanocomposites for enhanced cancer therapy. Int J Nanomedicine. 2015;10(Spec Iss):33–45. doi:10.2147/IJN.S8830726345327
  • Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small Weinh Bergstr Ger. 2015;11(12):1453–1459. doi:10.1002/smll.201402179
  • Ryan JA, Overton KW, Speight ME, et al. Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Anal Chem. 2007;79(23):9150–9159. doi:10.1021/ac071552417973401
  • Curry D, Cameron A, MacDonald B, et al. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. Nanoscale. 2015;7(46):19611–19619. doi:10.1039/c5nr05826k26549208
  • Lee C-W, Jang -L-L, Pan H-J, Chen Y-R, Chen -C-C, Lee C-H. Membrane roughness as a sensitive parameter reflecting the status of neuronal cells in response to chemical and nanoparticle treatments. J Nanobiotechnology. 2016;14:1. doi:10.1186/s12951-016-0161-526743777
  • Dobrescu A, Chang M, Kirtani V, Turi GK, Hennawy R, Hindenburg AA. Study of estrogen receptor and progesterone receptor expression in breast ductal carcinoma in situ by immunohistochemical staining in ER/PgR-negative invasive breast cancer. ISRN Oncol. 2011;2011. doi:10.5402/2011/673790
  • Yip C-H RA. Estrogen and progesterone receptors in breast cancer. Future Oncol Lond Engl. 2014;10(14):2293–2301. doi:10.2217/fon.14.110
  • Travis RC, Key TJ. Oestrogen exposure and breast cancer risk. Breast Cancer Res BCR. 2003;5(5):239–247. doi:10.1186/bcr62812927032
  • Santen RJ, Yue W, Wang J-P. Estrogen metabolites and breast cancer. Steroids. 2015;99(Pt A):61–66. doi:10.1016/j.steroids.2014.08.00325168343
  • Huang B, Warner M, Gustafsson J-Å. Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol. 2015;418(Pt 3):240–244. doi:10.1016/j.mce.2014.11.01525433206
  • Jiménez-Salazar JE, Posadas-Rodríguez P, Lazzarini-Lechuga RC, et al. Membrane-initiated estradiol signaling of epithelial-mesenchymal transition-associated mechanisms through regulation of tight junctions in human breast cancer cells. Horm Cancer. 2014;5(3):161–173. doi:10.1007/s12672-014-0180-324771004
  • Lipovka Y, Konhilas JP. The complex nature of oestrogen signalling in breast cancer: enemy or ally? Biosci Rep. 2016;36(3). doi:10.1042/BSR20160017
  • Pietras RJ, Szego CM. Estrogen receptors in uterine plasma membrane. J Steroid Biochem. 1979;11(4):1471–1483.513766
  • Morris JF, Christian HC, Chapman LP, et al. Steroid effects on secretion from subsets of lactotrophs: role of folliculo-stellate cells and annexin 1. Arch Physiol Biochem. 2002;110(1–2):54–61. doi:10.1076/apab.110.1.54.91011935401
  • González M, Reyes R, Damas C, Alonso R, Bello AR. Oestrogen receptor alpha and beta in female rat pituitary cells: an immunochemical study. Gen Comp Endocrinol. 2008;155(3):857–868. doi:10.1016/j.ygcen.2007.10.00718067893
  • May RM, Tabatadze N, Czech MM, Woolley CS. Estradiol regulates large dense core vesicles in the hippocampus of adult female rats. Brain Struct Funct. 2014;219(6):1947–1954. doi:10.1007/s00429-013-0614-723893355
  • Moats RK, Ramirez VD. Electron microscopic visualization of membrane-mediated uptake and translocation of estrogen-BSA: colloidalgold by hep G2 cells. J Endocrinol. 2000;166(3):631–647.10974657
  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20(9):1487–1495. doi:10.1038/sj.leu.240429616791265
  • Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603–1611. doi:10.1242/jcs.06438620445011
  • Totta P, Pesiri V, Marino M, Acconcia F. Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation. Migliaccio A, ed PLoS ONE. 2014;9(4):e94880. doi:10.1371/journal.pone.009488024736371
  • Luoma JI, Boulware MI, Mermelstein PG. Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol. 2008;290(1–2):8–13. doi:10.1016/j.mce.2008.04.00518502030
  • Kim KH, Moriarty K, Bender JR. Vascular cell signaling by membrane estrogen receptors. Steroids. 2008;73(9-10):864-869. doi: 10.1016/j.steroids.2008.01.008.
  • Maselli A, Pierdominici M, Vitale C, Ortona E. Membrane lipid rafts and estrogenic signalling: a functional role in the modulation of cell homeostasis. Apoptosis. 2015;20(5):671–678. doi:10.1007/s10495-015-1093-525637184
  • Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul. 2015;57:130–146. doi:10.1016/j.jbior.2014.10.00325465296
  • Sebastian T, Sreeja S, Thampan RV. Import and export of nuclear proteins: focus on the nucleocytoplasmic movements of two different species of mammalian estrogen receptor. Mol Cell Biochem. 2004;260(1–2):91–102.15228090
  • Peckys DB, de Jonge N. Gold nanoparticle uptake in whole cells in liquid examined by environmental scanning electron microscopy. Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can. 2014;20(1):189–197. doi:10.1017/S1431927613013986
  • Ng CT, Tang FMA, Li JJ, Ong C, Yung LLY, Bay BH. Clathrin-mediated endocytosis of gold nanoparticles in vitro. Anat Rec Hoboken NJ 2007. 2015;298(2):418–427. doi:10.1002/ar.23051
  • Kumar P, Kale RK, Baquer NZ. Estradiol modulates membrane-linked ATPases, antioxidant enzymes, membrane fluidity, lipid peroxidation, and lipofuscin in aged rat liver. J Aging Res. 2011;2011:580245. doi:10.4061/2011/58024522007298
  • Tsuda K, Kinoshita Y, Kimura K, Nishio I, Masuyama Y. Electron paramagnetic resonance investigation on modulatory effect of 17beta-estradiol on membrane fluidity of erythrocytes in postmenopausal women. Arterioscler Thromb Vasc Biol. 2001;21(8):1306–1312.11498458
  • Mehta N, Shaik S, Devireddy R, Gartia MR. Single-cell analysis using hyperspectral imaging modalities. J Biomech Eng. 2018;140:2. doi:10.1115/1.4038638
  • Moore T, Sorokulova I, Pustovyy O, et al. Microscopic evaluation of vesicles shed by erythrocytes at elevated temperatures. Microsc Res Tech. 2013;76(11):1163–1170. doi:10.1002/jemt.2228023964014
  • Verebes GS, Melchiorre M, Garcia-Leis A, Ferreri C, Marzetti C, Torreggiani A. Hyperspectral enhanced dark field microscopy for imaging blood cells. J Biophotonics. 2013;6(11–12):960–967. doi:10.1002/jbio.20130006723913514
  • Ş Comşa, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35(6):3147–3154.26026074
  • Wang Y, Xu C, Jiang N, et al. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy. Scanning. 2016;38(6):558–563. doi:10.1002/sca.2130026750438
  • Antonio PD, Lasalvia M, Perna G, Capozzi V. Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta. 2012;1818(12):3141–3148. doi:10.1016/j.bbamem.2012.08.00122897980
  • Wang J, Wan Z, Liu W, et al. Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs. Biosens Bioelectron. 2009;25(4):721–727. doi:10.1016/j.bios.2009.08.01119734031
  • Kim KS, Cho CH, Park EK, Jung M-H, Yoon K-S, Park H-K. AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PloS One. 2012;7(1):e30066. doi:10.1371/journal.pone.003006622272274
  • Ukraintsev E, Kromka A, Kozak H, Reme Z, Rezek B. Artifacts in atomic force microscopy of biological samples In: Frewin C, editor. Atomic Force Microscopy Investigations into Biology - from Cell to Protein. London: InTech; 2012. doi:10.5772/36203
  • Canale C, Torre B, Ricci D, Braga PC. Recognizing and avoiding artifacts in atomic force microscopy imaging. Methods Mol Biol Clifton NJ. 2011;736:31–43. doi:10.1007/978-1-61779-105-5_3
  • Hamouchene H, Arlt VM, Giddings I, Phillips DH. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics. 2011;12:333. doi:10.1186/1471-2164-12-33321714911
  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61(6):457–466. doi:10.1016/j.addr.2009.03.01019386275
  • Perner P, Rapp A, Dressler C, et al. Variations in cell surfaces of estrogen treated breast cancer cells detected by a combined instrument for far-field and near-field microscopy. Anal Cell Pathol J Eur Soc Anal Cell Pathol. 2002;24(2–3):89–100. doi:10.1155/2002/132504
  • Kim KH, Moriarty K, Bender JR. Vascular cell signaling by membrane estrogen receptors. Steroids. 2008;73(9–10):864–869. doi:10.1016/j.steroids.2008.01.00818325557
  • Francis LW, Lewis PD, Gonzalez D, et al. Progesterone induces nano-scale molecular modifications on endometrial epithelial cell surfaces. Biol Cell. 2018;101(8):481–493. doi:10.1042/BC20080189
  • Totta P, Pesiri V, Enari M, Marino M, Acconcia F. Clathrin heavy chain interacts with estrogen receptor α and modulates 17β-estradiol signaling. Mol Endocrinol Baltim Md. 2015;29(5):739–755. doi:10.1210/me.2014-1385
  • Ujihara M, Dang NM, Imae T. Fluorescence quenching of uranine on confeito-like Au nanoparticles. J Nanosci Nanotechnol. 2014;14(7):4906–4910.24757961
  • Shukla RS, Jain A, Zhao Z, Cheng K. Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex. Nanomedicine Nanotechnol Biol Med. 2016;12(5):1323–1334. doi:10.1016/j.nano.2016.02.003
  • Park J, Ha MK, Yang N, Yoon TH. Flow cytometry-based quantification of cellular Au nanoparticles. Anal Chem. 2017;89(4):2449–2456. doi:10.1021/acs.analchem.6b0441828192941
  • Kodiha M, Hutter E, Boridy S, Juhas M, Maysinger D, Stochaj U. Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell Mol Life Sci. 2014;71(21):4259–4273. doi:10.1007/s00018-014-1622-324740795
  • Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307. doi:10.1007/s00232-014-9637-024573305
  • Marczell I, Balogh P, Nyiro G, et al. Membrane-bound estrogen receptor alpha initiated signaling is dynamin dependent in breast cancer cells. Eur J Med Res. 2018;23(1):31. doi:10.1186/s40001-018-0328-729880033
  • Unak G, Ozkaya F, Medine EI, et al. Gold nanoparticle probes: design and in vitro applications in cancer cell culture. Colloids Surf B Biointerfaces. 2012;90:217–226. doi:10.1016/j.colsurfb.2011.10.02722070896
  • Morgan AJ, Platt FM, Lloyd-Evans E, Galione A. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J. 2011;439(3):349–374. doi:10.1042/BJ2011094921992097
  • Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19(1):10901. doi:10.1117/1.JBO.19.1.01090124441941