152
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis

, , , , , , , , , , & show all
Pages 5989-6000 | Published online: 30 Jul 2019

References

  • Ledon JA, Savas J, Franca K, Chacon A, Nouri K. Intralesional treatment for keloids and hypertrophic scars: a review. Dermatol Surg. 2013;39:1745–1757. doi:10.1111/dsu.1234624299571
  • Hardy MA. The biology of scar formation. Phys Ther. 1989;69:1014–1024. doi:10.1093/ptj/69.12.10142479956
  • Zhang J, Li Y, Bai X, Li Y, Shi J, Hu D. Recent advances in hypertrophic scar. Histol Histopathol. 2018;33:27–39. doi:10.14670/HH-11-90828560711
  • Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg. 1999;104:1435–1458.10513931
  • Rabello FB, Souza CD, Farina JJ. Update on hypertrophic scar treatment. Clinics (Sao Paulo). 2014;69:565–573. doi:10.6061/clinics/2014(08)1125141117
  • Steinstraesser L, Flak E, Witte B, et al. Pressure garment therapy alone and in combination with silicone for the prevention of hypertrophic scarring: randomized controlled trial with intraindividual comparison. Plast Reconstr Surg. 2011;128:306e–313e. doi:10.1097/PRS.0b013e3182268c69
  • Sheridan RL. Burn care: results of technical and organizational progress. JAMA. 2003;290:719–722. doi:10.1001/jama.290.6.71912915409
  • Moulin, V., Larochelle S, Langlois C et al. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol. 2004;198:350–358. doi:10.1002/jcp.1041514755540
  • Zhang J, Liu Z, Cao W, et al. Amentoflavone inhibits angiogenesis of endothelial cells and stimulates apoptosis in hypertrophic scar fibroblasts. Burns. 2014;40:922–929. doi:10.1016/j.burns.2013.10.01224280521
  • Shi J, Xiao H, Li J, et al. Wild-type p53-modulated autophagy and autophagic fibroblast apoptosis inhibit hypertrophic scar formation. Lab Invest. A J Tech Methods and Pathology. 2018;98(11):1423–1437.
  • Zhou X, Xie Y, Xiao H, et al. MicroRNA-519d inhibits proliferation and induces apoptosis of human hypertrophic scar fibroblasts through targeting Sirtuin 7. Biomedicine & pharmacotherapy = Biomedicine & Pharmacotherapie. Apr 2018;100:184–190.
  • Yang Q, Wang Y, Yang Q, et al. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials. 2017;146:72–85. doi:10.1016/j.biomaterials.2017.09.00828898759
  • Hu Y, Wang Y. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomed. 2641 2012;7:2641–52. doi: 10.2147/IJN.S31133.
  • Sankar R, Baskaran A, Shivashangari KS, Ravikumar V. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats. J Mater Sci Mater Med. 2015;26:214. doi:10.1007/s10856-015-5543-y26194977
  • Borkow G, Gabbay J, Dardik R, et al. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 2010;18:266–275. doi:10.1111/j.1524-475X.2010.00573.x20409151
  • Wang Y, Zi X-Y, Su J, et al. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomedicine. 2012;7:2641–2652. doi:10.2147/IJN.S3113322679374
  • Wang Y, Yang F, Zhang H-X, et al. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 2013;4:e783. doi:10.1038/cddis.2013.31423990023
  • Morris DE, Wu L, Zhao LL, et al. Acute and chronic animal models for excessive dermal scarring: quantitative studies. Plast Reconstr Surg. 1997;100:674–681.9283567
  • Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–1252. doi:10.1016/j.cell.2006.06.01016814712
  • Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25:365–451. doi:10.1016/j.mam.2004.03.00115302203
  • Huttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr. 2008;40:445–456. doi:10.1007/s10863-008-9169-318843528
  • Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds. 2005;4:138–144. doi:10.1177/153473460528001816100094
  • Desmouliere A, Badid C, Bochaton-Piallat ML, Gabbiani G. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol. 1997;29:19–30.9076938
  • Lagares, D., Santos A, Grasberger PE, et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med. 2017;9. doi:10.1126/scitranslmed.aal3765
  • Mohammadinejad, R., Moosavi MA, Tavakol S, et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy Jan 2019;15(1):4–33.
  • Wang Y, Yang Q-W, Yang Q, et al. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway. Int J Nanomedicine2017;12:2569–2579. doi:10.2147/IJN.S130537
  • Campbell KJ, Tait S. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8. doi:10.1098/rsob.180002
  • Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–1312. doi:10.1126/science.281.5381.13099721092
  • Hockenbery DM, Giedt CD, O’Neill JW, Manion MK, Banker DE. Mitochondria and apoptosis: new therapeutic targets. Adv Cancer Res. 2002;85:203–242.12374287
  • Singh KK. Mitochondria damage checkpoint, aging, and cancer. Ann N Y Acad Sci. 2006;1067:182–190. doi:10.1196/annals.1354.02216803984
  • Sinha N, Panda PK, Naik PP, et al. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma. Mol Carcinog. 2017;56:2400–2413. doi:10.1002/mc.2267928543759
  • Mos quera J, Garcia I, Liz-Marzan LM. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc Chem Res. 18 Sep 2018;51(9):2035–2313.
  • Li Z, Tang S, Wang B, et al. Metabolizable small gold nanorods: size-dependent cytotoxicity, cell uptake and in vivo biodistribution. ACS Biomaterials Science & Engineering. 2016 2016;2(5):789–797.
  • Zhang X, Luo Z, Chen J, et al. Storage of gold nanoclusters in muscle leads to their biphasic in vivo clearance. Small. 2015;11:1683–1690. doi:10.1002/smll.20140223325408470
  • Cho W, Cho M, Jeong J, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2009;236:16–24. doi:10.1016/j.taap.2008.12.02319162059
  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134:2139–2147.22191645
  • Song Y, Yu Z, Song B, et al. Usnic acid inhibits hypertrophic scarring in a rabbit ear model by suppressing scar tissue angiogenesis. Biomed Pharmacother. 2018;108:524–530. doi:10.1016/j.biopha.2018.06.17630243085
  • Wang J, Chen H, Shankowsky HA, Scott PG, Tredget EE. Improved scar in postburn patients following interferon-alpha2b treatment is associated with decreased angiogenesis mediated by vascular endothelial cell growth factor. J Interferon Cytokine Res. 2008;28:423–434. doi:10.1089/jir.2007.010418597619
  • Song H, Wang W, Zhao P, Qi Z, Zhao S. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale. 2014;6:3206. doi:10.1039/c3nr04363k24499922