305
Views
40
CrossRef citations to date
0
Altmetric
Review

Hypoxia-active nanoparticles used in tumor theranostic

, , , &
Pages 3705-3722 | Published online: 22 May 2019

References

  • Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer. 2008;8(1):56–61. doi:10.1038/nrc225518059462
  • Lewis DM, Park KM, Tang V, et al. Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc Natl Acad Sci U S A. 2016;113(33):9292–9297. doi:10.1073/pnas.160531711327486245
  • Da Motta LL, Ledaki I, Purshouse K, et al. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017;36(1):122–132. doi:10.1038/onc.2016.18427292261
  • Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12(11):958–962. doi:10.1038/nmat379224150413
  • Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410. doi:10.1038/nrc306421606941
  • Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967–975.18987634
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.21258394
  • Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–239.17440684
  • Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–439. doi:10.1038/nrc372624827502
  • Harris AL. Hypoxia - A key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47. doi:10.1038/nrc70411902584
  • Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22. doi:10.1038/nrc318322169972
  • Loscalzo J. Adaptions to hypoxia and redox stress: essential concepts confounded by misleading terminology. Circ Res. 2016;119(4):511–513. doi:10.1161/CIRCRESAHA.116.30939427492841
  • Wardman P. Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr Med Chem. 2001;8(7):739–761.11375747
  • Schwartz HS, Sodergren JE, Philips FS. MITOMYCIN C: CHEMICAL AND BIOLOGICAL STUDIES ON ALKYLATION. Science (New York, NY). 1963;142(3596):1181–1183. doi:10.1126/science.142.3596.1181
  • Iyer VN, Szybalski W. MITOMYCINS AND PORFIROMYCIN: CHEMICAL MECHANISM OF ACTIVATION AND CROSS-LINKING OF DNA. Science (New York, NY). 1964;145(3627):55–58. doi:10.1126/science.145.3627.55
  • Kumar R, Kim EJ, Han J, et al. Hypoxia-directed and activated theranostic agent: imaging and treatment of solid tumor. Biomaterials. 2016;104:119–128. doi:10.1016/j.biomaterials.2016.07.01027449948
  • de Groot FM, Damen EW, Scheeren HW. Anticancer prodrugs for application in monotherapy: targeting hypoxia, tumor-associated enzymes, and receptors. Curr Med Chem. 2001;8(9):1093–1122.11472243
  • Qiao Y, Wan J, Zhou L, et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018; 11(1). doi:10.1002/wnan.1527.
  • Sharma A, Arambula JF, Koo S, et al. Hypoxia-targeted drug delivery. Chem Soc Rev. 2019;48(3):771–813. doi:10.1039/c8cs00304a30575832
  • Piao W, Hanaoka K, Fujisawa T, et al. Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy. J Am Chem Soc. 2017;139(39):13713–13719. doi:10.1021/jacs.7b0501928872304
  • Yamamoto N, Renfrew AK, Kim BJ, Bryce NS, Hambley TW. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J Med Chem. 2012;55(24):11013–11021. doi:10.1021/jm301471323199008
  • Xie Z, Ma L, deKrafft KE, Jin A, Lin W. Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc. 2010;132(3):922–923. doi:10.1021/ja909629f20041656
  • Finikova OS, Cheprakov AV, Vinogradov SA. Synthesis and luminescence of soluble meso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins. J Org Chem. 2005;70(23):9562–9572. doi:10.1021/jo051580r16268634
  • Neugebauer U, Pellegrin Y, Devocelle M, et al.Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem Commun (Camb). 2008;(42):5307–5309. doi:10.1039/b810403d18985192
  • Zhang S, Hosaka M, Yoshihara T, et al. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res. 2010;70(11):4490–4498. doi:10.1158/0008-5472.CAN-09-394820460508
  • Tobita S, Yoshihara T. Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Curr Opin Chem Biol. 2016;33:39–45. doi:10.1016/j.cbpa.2016.05.01727281510
  • Lv W, Yang T, Yu Q, et al. A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy. Adv Sci (Weinh). 2015;2(10):1500107. doi:10.1002/advs.20150008827980906
  • Lv W, Zhang Z, Zhang KY, et al. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew Chem Int Ed Engl. 2016;55(34):9947–9951. doi:10.1002/anie.20160413027381490
  • Feng Z, Tao P, Zou L, et al. Hyperbranched phosphorescent conjugated polymer dots with iridium(III) complex as the core for hypoxia imaging and photodynamic therapy. ACS Appl Mater Interfaces. 2017;9(34):28319–28330. doi:10.1021/acsami.7b0972128795796
  • Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012;112(8):4687–4735. doi:10.1021/cr200263w22670807
  • Liu J, Liu Y, Bu W, et al. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J Am Chem Soc. 2014;136(27):9701–9709. doi:10.1021/ja504298924956326
  • Papkovsky DB, Dmitriev RI. Biological detection by optical oxygen sensing. Chem Soc Rev. 2013;42(22):8700–8732. doi:10.1039/c3cs60131e23775387
  • Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19(4):316–317. doi:10.1038/8668411283581
  • Lv Z, Zou L, Wei H, Liu S, Huang W, Zhao Q. Phosphorescent starburst Pt(II) porphyrins as bifunctional therapeutic agents for tumor hypoxia imaging and photodynamic therapy. ACS Appl Mater Interfaces. 2018;10(23):19523–19533. doi:10.1021/acsami.8b0594429771486
  • Zhao Q, Zhou X, Cao T, et al. Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem Sci. 2015;6(3):1825–1831. doi:10.1039/c4sc03062a28694947
  • Zhou X, Liang H, Jiang P, et al. Multifunctional phosphorescent conjugated polymer dots for hypoxia imaging and photodynamic therapy of cancer cells. Adv Sci (Weinh). 2016;3(2):1500155.27722081
  • Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med. 1997;38(7):1155–1160.9225812
  • Lopci E, Grassi I, Rubello D, et al. Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clin Nucl Med. 2016;41(2):e87–e92. doi:10.1097/RLU.000000000000101726447388
  • Yu J, Zhang Y, Hu X, Wright G, Gu Z. Hypoxia-sensitive materials for biomedical applications. Ann Biomed Eng. 2016;44(6):1931–1945. doi:10.1007/s10439-016-1578-626926694
  • Liu K, Zhu HL. Nitroimidazoles as anti-tumor agents. Anticancer Agents Med Chem. 2011;11(7):687–691. doi:10.2174/18715201179681766421521156
  • Zbaida S, Levine WG. A novel application of cyclic voltammetry for direct investigation of metabolic intermediates in microsomal azo reduction. Chem Res Toxicol. 1991;4(1):82–88.1912304
  • Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med. 1995;22(3):265–280.7789400
  • Liu H, Xie Y, Zhang Y, et al. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials. 2017;121:130–143. doi:10.1016/j.biomaterials.2017.01.00128088075
  • Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–273. doi:10.1038/nature1303424590072
  • Lin QN, Bao CY, Yang YL, et al. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv Mater. 2013;25(14):1981–1986. doi:10.1002/adma.20120445523401259
  • Liu F, Lou JZ, Hristov D. X-Ray responsive nanoparticles with triggered release of nitrite, a precursor of reactive nitrogen species, for enhanced cancer radiosensitization. Nanoscale. 2017;9(38):14627–14634. doi:10.1039/c7nr04684g28936509
  • Dobrowsky W, Huigol NG, Jayatilake RS, et al. AK-2123 (Sanazol) as a radiation sensitizer in the treatment of stage III cervical cancer: results of an IAEA multicentre randomised trial. Radiother Oncol. 2007;82(1):24–29. doi:10.1016/j.radonc.2006.11.00717161478
  • Pasupathy K, Nair CK, Kagiya TV. Effect of a hypoxic radiosensitizer, AK 2123 (Sanazole), on yeast Saccharomyces cerevisiae. J Radiat Res. 2001;42(2):217–227.11599887
  • Sreeja S, Krishnan Nair CK. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle - Berberine complexes in a mouse model. Life Sci. 2018;195:71–80. doi:10.1016/j.lfs.2017.12.03629289560
  • Sreeja S, Nair CKK. Chemo-directed specific targeting of nanoparticle-doxorubicin complexes to tumor in animal model. J Drug Deliv Sci Technol. 2016;31:167–175. doi:10.1016/j.jddst.2016.01.003
  • Erdogar N, Iskit AB, Eroglu H, Sargon MF, Mungan NA, Bilensoy E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: safety and efficacy. Int J Pharm. 2014;471(1–2):1–9. doi:10.1016/j.ijpharm.2014.05.01424836669
  • Carames Masana F, de Reijke TM. The efficacy of Apaziquone in the treatment of bladder cancer. Expert Opin Pharmacother. 2017;18(16):1781–1788. doi:10.1080/14656566.2017.139251029034722
  • Pierce SE, Guziec LJ, Guziec FS, Brodbelt JS. Characterization of aziridinylbenzoquinone DNA cross-links by liquid chromatography-infrared multiphoton dissociation-mass spectrometry. Chem Res Toxicol. 2010;23(6):1097–1104. doi:10.1021/tx100073820369834
  • Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC. Exploring the mechanistic aspects of mitomycin antibiotic bioactivation in Chinese hamster ovary cells overexpressing NADPH: cytochromeC (P-450) reductase and DT-diaphorase. Adv Enzyme Regul. 1998;38:111–133.9762350
  • Rauth AM, Mohindra JK, Tannock IF. Activity of mitomycin C for aerobic and hypoxic cells in vitro and in vivo. Cancer Res. 1983;43(9):4154–4158.6409398
  • Hou ZQ, Wei H, Wang Q, et al. New method to prepare mitomycin C Loaded PLA-nanoparticles with high drug entrapment efficiency. Nanoscale Res Lett. 2009;4(7):732–737. doi:10.1007/s11671-009-9312-z20596446
  • Hou Z, Li Y, Huang Y, et al. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10(1):90–101. doi:10.1021/mp300489p23194396
  • Zhang P, Huang H, Chen Y, Wang J, Ji L, Chao H. Ruthenium(II) anthraquinone complexes as two-photon luminescent probes for cycling hypoxia imaging in vivo. Biomaterials. 2015;53:522–531. doi:10.1016/j.biomaterials.2015.02.12625890748
  • Qian C, Yu J, Chen Y, et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater. 2016;28(17):3313–3320. doi:10.1002/adma.20150586926948067
  • McCarthy HO, Yakkundi A, McErlane V, et al. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther. 2003;10(1):40–48. doi:10.1038/sj.cgt.770052212489027
  • Nishida CR, Lee M, de Montellano PR. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol Pharmacol. 2010;78(3):497–502. doi:10.1124/mol.110.06504520566689
  • Nishida CR, Ortiz de Montellano PR. Reductive heme-dependent activation of the n-oxide prodrug AQ4N by nitric oxide synthase. J Med Chem. 2008;51(16):5118–5120. doi:10.1021/jm800496s18681417
  • Mehibel M, Singh S, Chinje EC, Cowen RL, Stratford IJ. Effects of cytokine-induced macrophages on the response of tumor cells to banoxantrone (AQ4N). Mol Cancer Ther. 2009;8(5):1261–1269. doi:10.1158/1535-7163.MCT-08-092719435866
  • Paoni NF, Peale F, Wang F, et al. Time course of skeletal muscle repair and gene expression following acute hind limb ischemia in mice. Physiol Genomics. 2002;11(3):263–272. doi:10.1152/physiolgenomics.00110.200212399448
  • Knox HJ, Hedhli J, Kim TW, Khalili K, Dobrucki LW, Chan J. A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia. Nat Commun. 2017;8(1):1794. doi:10.1038/s41467-017-01951-029176550
  • Feng L, Cheng L, Dong Z, et al. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano. 2017;11(1):927–937.28027442
  • Peters KB, Brown JM. Tirapazamine: a hypoxia-activated topoisomerase II poison. Cancer Res. 2002;62(18):5248–5253.12234992
  • Zeman EM, Brown JM, Lemmon MJ, Hirst VK, Lee WW. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys. 1986;12(7):1239–1242.3744945
  • Shinde SS, Hay MP, Patterson AV, Denny WA, Anderson RF. Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase. J Am Chem Soc. 2009;131(40):14220–14221.19772319
  • Delahoussaye YM, Evans JW, Brown JM. Metabolism of tirapazamine by multiple reductases in the nucleus. Biochem Pharmacol. 2001;62(9):1201–1209.11705453
  • Patterson AV, Saunders MP, Chinje EC, Patterson LH, Stratford IJ. Enzymology of tirapazamine metabolism: a review. Anticancer Drug Des. 1998;13(6):541–573.9755718
  • Wang Y, Xie Y, Li J, et al. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano. 2017;11(2):2227–2238.28165223
  • Guo D, Xu S, Wang N, et al. Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials. 2017;144:188–198.28837960
  • Liu M, Wang L, Zheng X, Liu S, Xie Z. Hypoxia-triggered nanoscale metal-organic frameworks for enhanced anticancer activity. ACS Appl Mater Interfaces. 2018;10(29):24638–24647.29957930
  • Zhao P, Ren S, Liu Y, Huang W, Zhang C, He J. PL-W18O49-TPZ nanoparticles for simultaneous hypoxia-activated chemotherapy and photothermal therapy. ACS Appl Mater Interfaces. 2018;10(4):3405–3413.29313656
  • Feng Q, Li Y, Yang X, et al. Hypoxia-specific therapeutic agents delivery nanotheranostics: a sequential strategy for ultrasound mediated on-demand tritherapies and imaging of cancer. J Control Release. 2018;275:192–200.29474964
  • Lee J, Oh ET, Yoon H, et al. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale. 2017;9(20):6901–6909.28503686
  • Wang W, Lin L, Ma X, et al. Light-induced hypoxia-triggered living nanocarriers for synergistic cancer therapy. ACS Appl Mater Interfaces. 2018;10(23):19398–19407.29781276
  • Zhang X, Wu M, Li J, et al. Light-enhanced hypoxia-response of conjugated polymer nanocarrier for successive synergistic photodynamic and chemo-therapy. ACS Appl Mater Interfaces. 2018;10(26):21909–21919.29882654
  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8(3):173–184.17304245
  • Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–U1140.20305636
  • Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6(4):595–605.10476219
  • Takae S, Miyata K, Oba M, et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc. 2008;130(18):6001–6009.18396871
  • Perche F, Biswas S, Wang T, Zhu L, Torchilin VP. Hypoxia-targeted siRNA delivery. Angew Chem Int Ed Engl. 2014;53(13):3362–3366.24554550
  • Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng. 2011;2:281–298.22432620
  • Waite CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng. 2012;40(1):21–41.22428797
  • Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–2417.23423979
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–1915.19344179
  • Xie Z, Guo W, Guo N, et al. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy. Acta Biomater. 2018;71:351–362.29545193
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–732.13130303
  • Lu ZG, Li Y, Shi YJ, Li YH, Xiao ZB, Zhang X. Traceable nanoparticles with spatiotemporally controlled release ability for synergistic glioblastoma multiforme treatment. Adv Funct Mater. 2017;27(46):13.
  • Yang HY, Li Y, Lee DS. Multifunctional and stimuli-responsive magnetic nanoparticle-based delivery systems for biomedical applications. Adv Ther. 2018;1(2):1800011.
  • Guo D, Xu S, Huang Y, et al. Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials. 2018;177:67–77.29885587
  • Denny WA, Wilson WR. Bioreducible mustards: a paradigm for hypoxia-selective prodrugs of diffusible cytotoxins (HPDCs). Cancer Metastasis Rev. 1993;12(2):135–151.8375017
  • de Souza IC, Faro LV, Pinheiro CB, et al. Investigation of cobalt(iii)-triazole systems as prototypes for hypoxia-activated drug delivery. Dalton Trans. 2016;45(35):13671–13674.27488398
  • Renfrew AK, Bryce NS, Hambley TW. Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study. Chem Sci. 2013;4(9):3731–3739.
  • Sowa T, Menju T, Chen-Yoshikawa TF, et al. Hypoxia-inducible factor 1 promotes chemoresistance of lung cancer by inducing carbonic anhydrase IX expression. Cancer Med. 2017;6(1):288–297.28028936
  • Pastorek J, Pastorekova S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol. 2015;31:52–64. doi:10.1016/j.semcancer.2014.08.00225117006
  • Dubois L, Douma K, Supuran CT, et al. Imaging the hypoxia surrogate marker CA IX requires expression and catalytic activity for binding fluorescent sulfonamide inhibitors. Radiother Oncol. 2007;83(3):367–373. doi:10.1016/j.radonc.2007.04.01817502120
  • Alsaab HO, Sau S, Alzhrani RM, et al. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials. 2018;183:280–294. doi:10.1016/j.biomaterials.2018.08.05330179778
  • Chen Y, Hu LQ. Design of Anticancer Prodrugs for Reductive Activation. Med Res Rev. 2009;29(1):29–64. doi:10.1002/med.2013718688784
  • Phillips RM, Hendriks HR, Peters GJ. EO9 (Apaziquone): from the clinic to the laboratory and back again. Br J Pharmacol. 2013;168(1):11–18. doi:10.1111/j.1476-5381.2012.01996.x22509926
  • Komatsu H, Tanabe K, Nishimoto S. C-13-labeled indolequinone-DTPA-Gd conjugate for NMR probing cytochrome: P450 reductase-mediated one-electron reduction. Bioorg Med Chem Lett. 2011;21(2):790–793. doi:10.1016/j.bmcl.2010.11.10521168332
  • Nemeikaite-Ceniene A, Sarlauskas J, Anusevicius Z, Nivinskas H, Cenas N. Cytotoxicity of RH1 and related aziridinylbenzoquinones: involvement of activation by NAD(P)H: quinoneoxidoreductase (NQO1) and oxidative stress. Arch Biochem Biophys. 2003;416(1):110–118.12859987
  • Yang YP, Kuo HS, Tsai HD, Peng YC, Lin YL. The p53-dependent apoptotic pathway of breast cancer cells (BC-M1) induced by the bis-type bioreductive compound aziridinylnaphthoquinone. Breast Cancer Res. 2005;7(1):R19–R27. doi:10.1186/bcr93915642166
  • Li Y, Sun Y, Li J, et al. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging. J Am Chem Soc. 2015;137(19):6407–6416. doi:10.1021/jacs.5b0409725923361
  • Maurin MB, Rowe SM, Field KS, Swintosky RC, Hussain MA. Solubility behavior, phase transition, and structure-based nucleation inhibition of etanidazole in aqueous solutions. Pharm Res. 1996;13(9):1401–1405.8893282
  • Bonnet M, Hong CR, Gu YC, et al. Novel nitroimidazole alkylsulfonamides as hypoxic cell radiosensitisers. Bioorg Med Chem. 2014;22(7):2123–2132. doi:10.1016/j.bmc.2014.02.03924650701
  • Mallia MB, Mathur A, Sarma HD, Banerjee SA. (99m)Tc-labeled misonidazole analogue: step toward a (99m)Tc-alternative to [18F]fluromisonidazole for detecting tumor hypoxia. Cancer Biother Radiopharm. 2015;30(2):79–86. doi:10.1089/cbr.2014.170525569675
  • Aguilera KY, Brekken RA. Hypoxia Studies with Pimonidazole in vivo. Bio-Protocol. 2014;4:19. doi:10.21769/BioProtoc.1254
  • Zeng Y-C, Wu R, Xiao Y-P, et al. Radiation enhancing effects of sanazole and gemcitabine in hypoxic breast and cervical cancer cells in vitro. Contemp Oncol (Pozn). 2015;19(3):236–240. doi:10.5114/wo.2015.5182026557765
  • Hassan Metwally MA, Jansen JA, Overgaard J. Study of the population pharmacokinetic characteristics of nimorazole in head and neck cancer patients treated in the DAHANCA-5 trial. Clin Oncol (R Coll Radiol). 2015;27(3):168–175. doi:10.1016/j.clon.2014.11.02425530485
  • Metwally MA, Frederiksen KD, Overgaard J. Compliance and toxicity of the hypoxic radiosensitizer nimorazole in the treatment of patients with head and neck squamous cell carcinoma (HNSCC). Acta Oncol. 2014;53(5):654–661. doi:10.3109/0284186X.2013.86405024328536
  • White CL, Menghistu T, Twigger KR, et al. Escherichia coli nitroreductase plus CB1954 enhances the effect of radiotherapy in vitro and in vivo. Gene Ther. 2008;15(6):424–433. doi:10.1038/sj.gt.330308118079753
  • Winters T, Sercel A, Suto C, et al. Design and synthesis of 2-nitroimidazoles with variable alkylating and acylating functionality. Chem Pharm Bull. 2014;62(3):301–303.24583786
  • Hunter FW, Wouters BG, Wilson WR. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br J Cancer. 2016;114(10):1071–1077. doi:10.1038/bjc.2016.7927070712
  • Baran N, Molecular Pathways: KM. Hypoxia-Activated Prodrugs in Cancer Therapy. Clin Cancer Res. 2017;23(10):2382–2390. doi:10.1158/1078-0432.CCR-16-089528137923
  • Takakusagi Y, Kishimoto S, Naz S, et al. Radiotherapy synergizes with the hypoxia-activated prodrug evofosfamide: in vitro and in vivo studies. Antioxid Redox Signal. 2018;28(2):131–140. doi:10.1089/ars.2017.710628741367
  • Patterson AV, Ferry DM, Edmunds SJ, et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res. 2007;13(13):3922–3932. doi:10.1158/1078-0432.CCR-07-047817606726
  • Guise CP, Abbattista MR, Singleton RS, et al. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 2010;70(4):1573–1584. doi:10.1158/0008-5472.CAN-09-323720145130
  • Kim EY, Liu Y, Akintujoye OM, et al. Preliminary studies with a new hypoxia-selective cytotoxin, KS119W, in vitro and in vivo. Radiat Res. 2012;178(3):126–137.22862779
  • Penketh PG, Shyam K, Zhu R, Baumann RP, Ishiguro K, Sartorelli AC. Influence of phosphate and phosphoesters on the decomposition pathway of 1,2-bis(methylsulfonyl)-1-(2-chloroethyhydrazine (90CE), the active anticancer moiety generated by Laromustine, KS119, and KS119W. Chem Res Toxicol. 2014;27(5):818–833. doi:10.1021/tx500004y24618018
  • Papadopoulou MV, Bloomer WD. NLCQ-1 (NSC 709257): exploiting hypoxia with a weak DNA-intercalating bioreductive drug. Clin Cancer Res. 2003;9(15):5714–5720.14654556
  • Papadopoulou MV, Ji M, Rao MK, Bloomer WD. 4-3-(2-nitro-1-imidazolyl)propylamino −7-chloroquinoline hydrochloride (NLCQ-1), a novel bioreductive compound as a hypoxia-selective cytotoxin. Oncol Res. 2000;12(4):185–192.11341468
  • Miller TJ, Schneider RJ, Miller JA, et al. Photoreceptor cell apoptosis induced by the 2-nitroimidazole radiosensitizer, CI-1010, is mediated by p53-linked activation of caspase-3. Neurotoxicology. 2006;27(1):44–59. doi:10.1016/j.neuro.2005.06.00116125243
  • Breider MA, Pilcher GD, Graziano MJ, Gough AW. Retinal degeneration in rats induced by CI-1010, a 2-nitroimidazole radiosensitizer. Toxicol Pathol. 1998;26(2):234–239. doi:10.1177/0192623398026002079547861
  • Sharma R, Sharma A. 2-Nitroimidazole as Potential Nanoprobe in Hypoxia Imaging by MRI/PET. Boca Raton: Crc Press-Taylor & Francis Group; 2008.
  • Parkinson EI, Bair JS, Cismesia M, Hergenrother PJ. Efficient NQO1 substrates are potent and selective anticancer agents. ACS Chem Biol. 2013;8(10):2173–2183. doi:10.1021/cb400583223937670
  • Ger M, Kaupinis A, Nemeikaite-Ceniene A, et al. Quantitative proteomic analysis of anticancer drug RH1 resistance in liver carcinoma. Biochim Biophys Acta. 2016;1864(2):219–232. doi:10.1016/j.bbapap.2015.11.00526596252
  • Celik A, Yetis G. An unusually cold active nitroreductase for prodrug activations. Bioorg Med Chem. 2012;20(11):3540–3550. doi:10.1016/j.bmc.2012.04.00422546205
  • Jaberipour M, Vass SO, Guise CP, et al. Testing double mutants of the enzyme nitroreductase for enhanced cell sensitisation to prodrugs: effects of combining beneficial single mutations. Biochem Pharmacol. 2010;79(2):102–111. doi:10.1016/j.bcp.2009.07.02519665450
  • Amaia A, Pachon G, Cascante M, Creppy EE, Monge A. Lopez de Cerain A. Selective toxicity of a quinoxaline 1,4-di-N-oxide derivative in human tumour cell lines. Arzneimittel-Forschung. 2005;55(3):177–182.15819391
  • Gu Y, Jaiswal JK, Wang J, Hicks KO, Hay MP, Wilson WR. Photodegradation of the benzotriazine 1,4-Di-N-oxide hypoxia-activated prodrug SN30000 in aqueous solution. J Pharm Sci. 2014;103(11):3464–3472. doi:10.1002/jps.2409925212501
  • Wang J, Guise CP, Dachs GU, et al. Identification of one-electron reductases that activate both the hypoxia prodrug SN30000 and diagnostic probe EF5. Biochem Pharmacol. 2014;91(4):436–446. doi:10.1016/j.bcp.2014.08.00325130546
  • Hunter FW, Wang J, Patel R, et al. Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: comparison with other hypoxia-activated prodrugs. Biochem Pharmacol. 2012;83(5):574–585. doi:10.1016/j.bcp.2011.12.00522182429
  • Wang J, Foehrenbacher A, Su J, et al. The 2-nitroimidazole EF5 is a biomarker for oxidoreductases that activate the bioreductive prodrug CEN-209 under hypoxia. Clin Cancer Res. 2012;18(6):1684–1695. doi:10.1158/1078-0432.CCR-11-229622167409
  • Hicks KO, Siim BG, Jaiswal JK, et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res. 2010;16(20):4946–4957. doi:10.1158/1078-0432.CCR-10-143920732963
  • Shen X, Laber CH, Sarkar U, et al. Exploiting the inherent photophysical properties of the major tirapazamine metabolite in the development of profluorescent substrates for enzymes that catalyze the bioreductive activation of hypoxia-selective anticancer Prodrugs. J Org Chem. 2018;83(6):3126–3131. doi:10.1021/acs.joc.7b0303529461834
  • Manley E Jr., Waxman DJ. Impact of tumor blood flow modulation on tumor sensitivity to the bioreductive drug banoxantrone. J Pharmacol Exp Ther. 2013;344(2):368–377. doi:10.1124/jpet.112.20008923192656
  • Nesbitt H, Byrne NM, Williams SN, et al. Targeting hypoxic prostate tumors using the novel hypoxia-activated prodrug OCT1002 inhibits expression of genes associated with malignant progression. Clin Cancer Res. 2017;23(7):1797–1808. doi:10.1158/1078-0432.CCR-16-136127697998
  • Failes TW, Cullinane C, Diakos CI, Yamamoto N, Lyons JG, Hambley TW. Studies of a cobalt(III) complex of the MMP inhibitor marimastat: A potential hypoxia-activated prodrug. Chem Eur J. 2007;13(10):2974–2982. doi:10.1002/chem.20060113717171733
  • Schreiber-Brynzak E, Pichler V, Heffeter P, et al. Behavior of platinum(iv) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation. Metallomics. 2016;8(4):422–433. doi:10.1039/c5mt00312a26860208
  • Oszajca M, Collet G, Stochel G, Kieda C, Brindell M. Hypoxia-selective inhibition of angiogenesis development by NAMI-A analogues. Biometals. 2016;29(6):1035–1046. doi:10.1007/s10534-016-9974-927812766
  • Xie D, Kim S, Kohli V, et al. Hypoxia-responsive (19)F MRI probes with improved redox properties and biocompatibility. Inorg Chem. 2017;56(11):6429–6437. doi:10.1021/acs.inorgchem.7b0050028537705