557
Views
34
CrossRef citations to date
0
Altmetric
Original Research

Rifampicin conjugated silver nanoparticles: a new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae

, , , , , , , , & show all
Pages 3983-3993 | Published online: 29 May 2019

References

  • Maekawa K, Yamasaki K, Niizeki T, et al. Drop-on-demand laser sintering with silver nanoparticles for electronics packaging. IEEE T Comp Pack Man. 2012;2:868–877.
  • Lorenz C, Von Goetz N, Scheringer M, Wormuth M, Hungerbühler K. Potential exposure of German consumers to engineered nanoparticles in cosmetics and personal care products. Nanotoxicology. 2011;5:12–29. doi:10.3109/17435390.2010.48455421417685
  • Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366–377. doi:10.1038/nmat136815867920
  • Kamat PV. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C. 2007;1:11–12.
  • Astruc D. Nanoparticles and Catalysis. Weinheim: John Wiley & Sons; 2008.
  • Johnson BF. Nanoparticles in catalysis. Top Catal. 2003;24:147–159. doi:10.1023/B:TOCA.0000003086.83434.b6
  • Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–1265. doi:10.1016/j.addr.2008.03.01818558452
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–347.12628320
  • Corma A, Garcia H. Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev. 2008;37:2096–2126. doi:10.1039/b707314n18762848
  • Sýkora D, Kašička V, Mikšík I, et al. Application of gold nanoparticles in separation sciences. J Sep Sci. 2010;33:372–387. doi:10.1002/jssc.20090067720099261
  • Zhang H, Chhowalla M, Liu Z. 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev. 2018;47:3015–3017. doi:10.1039/c8cs90048e29700540
  • Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–1106.9027306
  • Lin Q-Y, Palacios E, Zhou W, et al. DNA-mediated size-selective nanoparticle assembly for multiplexed surface encoding. Nano Lett. 2018;18:2645–2649. doi:10.1021/acs.nanolett.8b0050929570302
  • Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84:741–749. doi:10.1007/s00253-009-2032-619488750
  • Gandubert VJ, Lennox RB. Assessment of 4-(dimethylamino) pyridine as a capping agent for gold nanoparticles. Langmuir. 2005;21:6532–6539. doi:10.1021/la050195u15982063
  • Corbierre MK, Cameron NS, Sutton M, Laaziri K, Lennox RB. Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir. 2005;21:6063–6072. doi:10.1021/la047193e15952861
  • Wang S, Chen KJ, Wu TH, et al. Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew Chem Int Ed Engl. 2010;49:3777–3781. doi:10.1002/anie.20100006220391446
  • Lu L, Sun R, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253.18505176
  • Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed. 2012;7:1189–1202. doi:10.2147/IJN.S26650
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–515. doi:10.1021/mp800051m18672949
  • Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: mini review. Curr Nanomed. 2018;8:88–99. doi:10.2174/2468187308666180501092519
  • Kim SY, Lee YM. Taxol-loaded block copolymer nanospheres composed of methoxy poly (ethylene glycol) and poly (ε-caprolactone) as novel anticancer drug carriers. Biomaterials. 2001;22:1697–1704.11396872
  • Mishra SS, Banode KB, Belgamwar VS. Nanotechnology: A Tool for Targeted Drug Delivery. Nanotechnology Applied To Pharmaceutical Technology. Alves dos Santos C, editor. Gewerbestrasse: Springer; 2017:113–137.
  • Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:1–10. doi:10.1186/1477-3155-3-6
  • Leroux J-C, Allémann E, De Jaeghere F, Doelker E, Gurny R. Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery. J Control Release. 1996;39:339–350. doi:10.1016/0168-3659(95)00164-6
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–2387. doi:10.1007/s11095-016-1958-527299311
  • Kotcherlakota R, Das S, Patra CR. Therapeutic Applications of Green-Synthesized Silver Nanoparticles. Green Synthesis, Characterization and Applications of Nanoparticles. Oxford: Elsevier; 2019:389–428.
  • Hayat MA. Colloidal Gold: Principles, Methods, and Applications. New York: Elsevier; 2012.
  • Khan JA, Kudgus RA, Szabolcs A, et al. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS One. 2011;6:e20347. doi:10.1371/journal.pone.002034721738572
  • Pillai ZS, Kamat PV. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B. 2004;108:945–951. doi:10.1021/jp037018r
  • Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–912.11290327
  • Sensi P. History of the development of rifampin. Rev Infect Dis. 1983;5:S402–S406. doi:10.1093/clinids/5.Supplement_3.S4026635432
  • Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2012;56:e1–e25. doi:10.1093/cid/cis80323223583
  • Dunne W, Mason E, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 1993;37:2522–2526.8109913
  • Zheng Z, Stewart PS. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2002;46:900–903.11850284
  • J-I S, Fujino T, Araake M, et al. Emergence of rifampicin resistance in methicillin-resistant Staphylococcus aureus in tuberculosis wards. J Infect Chemother. 2006;12:47–50. doi:10.1007/s10156-005-0417-816506090
  • Mu H, Guo F, Niu H, Liu Q, Wang S, Duan J. Chitosan improves anti-biofilm efficacy of gentamicin through facilitating antibiotic penetration. Int J Mol Sci. 2014;15:22296–22308. doi:10.3390/ijms15122229625479075
  • Ahmed A, Khan AK, Anwar A, Ali SA, Shah MR. Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb Pathog. 2016;98:50–56. doi:10.1016/j.micpath.2016.06.01627321770
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Faraday Discuss. 1951;11:55–75. doi:10.1039/df9511100055
  • Clinical and Laboratory Standards Institute. M27-A3: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard; 3rd ed. Wayne, PA: CLSI; 2008.
  • O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Methods Enzymol 1999;310:91–109. doi: 10.1016/S0076-6879(99)10008-9
  • Khan AK, Ahmed A, Hussain M, et al. Antibiofilm potential of 16-oxo-cleroda-3, 13 (14) E-diene-15 oic acid and its five new γ-amino γ-lactone derivatives against methicillin resistant Staphylococcus aureus and Streptococcus mutans. Eur J Med Chem. 2017;138:480–490. doi:10.1016/j.ejmech.2017.06.06528692914
  • Nanda K, Maisels A, Kruis F, Fissan H, Stappert S. Higher surface energy of free nanoparticles. Phys Rev Lett. 2003;91:106102. doi:10.1103/PhysRevLett.91.10610214525494
  • Qiu L, Shao Z, Yang M, et al. Study on effects of carboxymethyl cellulose lithium (CMC-Li) synthesis and electrospinning on high-rate lithium ion batteries. Cellulose. 2014;21:615–626. doi:10.1007/s10570-013-0108-z
  • Liu H, Zhang H, Wang J, Wei J. Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis. Arab J Chem. Epub 2017 Sept 17.
  • Hebeish A, El-Rafie M, Abdel-Mohdy F, Abdel-Halim E, Emam HE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym. 2010;82:933–941. doi:10.1016/j.carbpol.2010.06.020
  • Barton J, Pretty J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ Sci Technol. 2010;44:3947–3955. doi:10.1021/es903183r20337470
  • Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11:77–89. doi:10.1007/s11051-008-9446-4
  • Du X, Wang C, Chen M, Jiao Y, Wang J. Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C. 2009;113:2643–2646.
  • Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc. 2007;129:13939–13948. doi:10.1021/ja074447k17948996
  • Dong X, Ji X, Wu H, et al. Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C. 2009;113:6573–6576.
  • Mulvaney P, Linnert T, Henglein A. Surface chemistry of colloidal silver in aqueous solution: observations on chemisorption and reactivity. J Phys Chem C. 1991;95:7843–7846. doi:10.1021/j100173a053
  • Naz SS, Islam NU, Shah MR, et al. Enhanced biocidal activity of Au nanoparticles synthesized in one pot using 2, 4-dihydroxybenzene carbodithioic acid as a reducing and stabilizing agent. J Nanobiotechnol. 2013;11:13. doi:10.1186/1477-3155-11-13
  • Kanaras AG, Kamounah FS, Schaumburg K, Kiely CJ, Brust M. Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem Comm. 2002;2294–2295. doi:10.1039/b207838b12430408
  • Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Comm. 2012;48:380–382. doi:10.1039/c1cc15678k22080285
  • Ramos MADS, Da Silva PB, Spósito L, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomed. 2018;13:1179. doi:10.2147/IJN.S177627
  • Sabaeifard P, Abdi-Ali A, Gamazo C, Irache JM, Soudi MR. Improved effect of amikacin-loaded poly (D, L-lactide-co-glycolide) nanoparticles against planktonic and biofilm cells of Pseudomonas aeruginosa. J Med Microbiol. 2017;66:137–148. doi:10.1099/jmm.0.00043028260589