812
Views
84
CrossRef citations to date
0
Altmetric
Review

Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles

, &
Pages 3389-3401 | Published online: 08 May 2019

References

  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–1316. doi:10.1158/1078-0432.CCR-07-144118316549
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2007;2:751–760. doi:10.1038/nnano.2007.387
  • Mo R, Jiang T, Gu Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Int Ed Chemie. 2014;53:1–7. doi:10.1002/anie.201400268
  • Dicheva BM, Ten Hagen TLM, Seynhaeve ALB, Amin M, Eggermont AMM, Koning GA. Enhanced specificity and drug delivery in tumors by cRGD - anchoring thermosensitive liposomes. Pharm Res. 2015;32(12):3862. doi:10.1007/s11095-014-1538-526202516
  • Talelli M, Barz M, Rijcken CJF, Kiessling F, Hennink WE, Lammers T. Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today. 2015;10(1):93–117. doi:10.1016/j.nantod.2015.01.00525893004
  • Jhaveri AM, Vladimir P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:1–26. doi:10.3389/fphar.2014.0000124478702
  • Wu H, Shi H, Zhang H, et al. Biomaterials Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials. 2014;35:5369–5380. doi:10.1016/j.biomaterials.2014.03.03824709520
  • Tang MX, Redemann CT, Szoka FC. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem. 1996;7(6):703–714. doi:10.1021/bc96006308950489
  • Zhang C, Pan D, Luo K, She W, Guo C, Yang Y. Peptide dendrimer – doxorubicin conjugate-based nanoparticle as an enzyme-responsive drug delivery system for cancer therapy. Adv Healthc Mater. 2014;3(8):1299–1308.24706635
  • Yavuz B, Pehlivan SB, Imran Vural NÜ. In vitro/In vivo evaluation of dexamethasone-PAMAM dendrimer complexes for retinal drug delivery. Pharm Drug Deliv Pharm Technol. 2015;104:3814–3823.
  • Maleki Dizaj S, Barzegar-Jalali M, Hossein Zarrintan M, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv. 2015;12(10):1649–1660. doi:10.1517/17425247.2015.104953026005036
  • Zhou J, Zhang W, Hong C, Pan C. Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release. ACS Appl Mater Interfaces. 2015;7(6):3618–3625. doi:10.1021/am507832n25625307
  • Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2018;23(1):47. doi:10.3390/molecules23010047
  • Poonia N, Lather V, Pandita D. Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discov Today. 2017;23(2):315–332. doi:10.1016/j.drudis.2017.10.02229128658
  • Petrak K. Essential properties of drug-targeting delivery systems. Drug Discov Today. 2005;10(23):1667–1673. doi:10.1016/S1359-6446(05)03698-616376827
  • Vogt C, Toprak MS, Muhammed M, Laurent S, Jean-Luc Bridot RNM. High quality and tuneable silica shell-magnetic core nanoparticles. J Nanopart Res. 2010;12(4):1137–1147. doi:10.1007/s11051-009-9661-7
  • Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Jacs. 2007;129:8845–8849. doi:10.1021/ja0719780
  • Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124–133. doi:10.4103/2230-973X.160844
  • Khosravian P, Ardestani MS, Khoobi M, et al. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. Onco Targets Ther. 2016;9:7315–7330. doi:10.2147/OTT.S11381527980423
  • Meng H, Wang M, Liu H, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 2015;9(4):3540–3557. doi:10.1021/acsnano.5b0051025776964
  • Rosenholm JM, Sahlgren C, Lindén M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drugs Targets. 2011;12:1166–1186. doi:10.2174/138945011795906624
  • Napierska D, Thomassen LCJ, Rabolli V, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5(7):846–853. doi:10.1002/smll.20080046119288475
  • Lu F, Wu S, Hung Y, Mou C. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5(12):1408–1413. doi:10.1002/smll.v5:1219296554
  • Oh W, Kim S, Choi M, et al. Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano. 2010;4(9):5301–5313. doi:10.1021/nn100561e20698555
  • Bhattacharjee S, Lhj DH, Evers NM, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol. 2010;7(25):1–12. doi:10.1186/1743-8977-7-120180970
  • Dávila-Ibáñez AB, Salgueirino V, Martinez-Zorzano V, et al. Magnetic silica nanoparticle cellular uptake and cytotoxicity regulated by electrostatic polyelectrolytes-DNA loading at their surface. ACS Nano. 2012;1:747–759. doi:10.1021/nn204231g
  • Dávila-Ibáñez AB, Buurma NJ, Salgueriño V. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles. Nanoscale. 2013;5:4797–4807. doi:10.1039/c3nr34358h23612682
  • Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM, Le L. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat. 2002;200:581–597.12162726
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–664. doi:10.1038/nrclinonc.2010.13920838415
  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi:10.1016/j.addr.2013.11.00924270007
  • Noguchi Y, Wu J, Duncan R, Ulbrich K, Akaike T. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res. 1998;89:307–314.9600125
  • Lee JE, Lee N, Kim H, et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. Jacs. 2010;132:552–557. doi:10.1021/ja905793q
  • Meng H, Mai WX, Zhang H, et al. Codelivery of an optimal Drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7(2):994–1005. doi:10.1021/nn304406623289892
  • Durfee PN, Lin Y, Dunphy DR, et al. Mesoporous silica nanoparticle-supported lipid bilayers (Protocells) for active targeting and delivery to individual leukemia cells. ACS Nano. 2016;10(9):8325–8345. doi:10.1021/acsnano.6b0281927419663
  • Babaei M, Abnous K, Taghdisi SM, et al. Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine. 2017;12(11):1261–1279. doi:10.2217/nnm-2017-002828520529
  • Zhou S, Wu D, Yin X, et al. Intracellular pH-responsive and rituximab- conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J Exp Clin Cancer Res. 2017;36(24):1–14. doi:10.1186/s13046-016-0473-128049532
  • Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine. 2016;1:5645–5669. doi:10.2147/IJN.S115727
  • Wang K, Yao H, Meng Y, Wang Y, Yan X, Huang R. Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater. 2015;16:196–205. doi:10.1016/j.actbio.2015.01.00225596325
  • Mo J, He L, Ma B, Chen T. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier. ACS Appl Mater Interfaces. 2016;8(11):6811–6825. doi:10.1021/acsami.5b1173026911360
  • Slowing II, Vivero-Escoto JL, Wu C, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–1288. doi:10.1016/j.addr.2008.03.01218514969
  • Warburg O, Franz Wind AEN. The metabolism of tumors in the body. J Gen Physiol. 1926;8:519–530. doi:10.1085/jgp.8.6.519
  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.13298683
  • Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science (80-). 1997;277:1232–1237. doi:10.1126/science.277.5330.1232
  • Sukhorukov GB, Donath E, Lichtenfeld H, et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A. 1998;137:253–266. doi:10.1016/S0927-7757(98)00213-1
  • Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Int Ed Chemie. 1998;37(16):2201–2205. doi:10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
  • Feng W, Nie W, He C, et al. Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces. 2014;6(11):8447–8460. doi:10.1021/am501337s24745551
  • Xu R, Sun G, Li Q, Wang E, Gu J. A dual-responsive superparamagnetic Fe3O4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM −19. Solid State Sci. 2010;12(10):1720–1725. doi:10.1016/j.solidstatesciences.2010.06.026
  • Feng W, Zhou X, He C, et al. Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J Mater Chem B. 2013;1:5886–5898. doi:10.1039/c3tb21193b
  • Wan X, Zhang G, Liu S. pH-disintegrable polyelectrolyte multilayer- coated mesoporous silica nanoparticles exhibiting triggered co-release of cisplatin and model drug molecules. Macromol Rapid Commun. 2011;32(14):1082–1089. doi:10.1002/marc.20110019821618323
  • Chen T, Hao Y, Yang N, Wang M, Dinga C, Fu J. Graphene quantum dot-capped mesoporous silica nanoparticles through an acid-cleavable acetal bond for intracellular drug delivery and imaging. Mater Chem B. 2014;2:4979–4982. doi:10.1039/C4TB00849A
  • Chen Y, Ai K, Liu J, Sun G, Yin Q, Lu L. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials. 2015;60:111–120. doi:10.1016/j.biomaterials.2015.05.00325988726
  • Martínez-Carmona M, Lozano D, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 2018;65:393–404. doi:10.1016/j.actbio.2017.11.00729127069
  • Chem JM, Cheng S, Liao W, Chen L, Lee C. pH-controllable release using functionalized mesoporous silica nanoparticles as an oral drug delivery system. J Mater Chem. 2011;21:7130–7137. doi:10.1039/c0jm04490c
  • Huang I, Sun S, Cheng S, Lee C, Wu C. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Ther Discov. 2011;10(5):761–769.
  • Lin C, Cheng S, Liao W, et al. Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin. Int J Pharm. 2012;429:138–147. doi:10.1016/j.ijpharm.2012.03.02622465413
  • Lin J, Du J, Yang Y, Li L, Zhang D. pH and redox dual stimulate-responsive nanocarriers based on hyaluronic acid coated mesoporous silica for targeted drug delivery. Mater Sci Eng C Mater Biol Appl. 2017;81:478–484. doi:10.1016/j.msec.2017.08.03628888000
  • Zhang M, Jia L, Ying K, et al. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int J Biol Macromol. 2017;98:691–700. doi:10.1016/j.ijbiomac.2017.01.13628174081
  • Sun L, Zhang X, An J, Su C, Guo Q, Li C. Boronate ester bond-based core–shell nanocarriers with pH response for anticancer drug delivery. RSC Adv. 2014;4:20208–20215. doi:10.1039/C4RA01812E
  • Tan L, Yang M, Wu H, et al. Glucose- and pH-responsive nanogated ensemble based on polymeric network capped mesoporous silica. ACS Appl Mater Interfaces. 2015;7:6310−6316. doi:10.1021/acsami.5b0063125735191
  • Li Z, Liu Y, Wang X, et al. One-pot construction of functional mesoporous silica nanoparticles for the tumor-acidity-activated synergistic chemotherapy of glioblastoma. ACS Appl Mater Interfaces. 2013;5:7995−8001. doi:10.1021/am401486h23869943
  • Lee C, Cheng S, Huang I, et al. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Int Ed Chemie. 2010;49:8214–8219. doi:10.1002/anie.201002639
  • Cheng Y, Luo G, Zhu J, et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2015;7:9078−9087. doi:10.1021/acsami.5b0075225893819
  • De la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64(11):967–978. doi:10.1016/j.addr.2012.01.00222266127
  • Liu Y, Ding X, Li J, et al. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology. 2015;26(14):145102. doi:10.1088/0957-4484/26/14/14510225789511
  • Saito G, Swanson JA, Lee K. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: rola and site of cellular reducing activities. Adv Drug Deliv Rev. 2003;55:199–215.12564977
  • Chen X, Sun H, Hu J, Han X, Liu H, Hu Y. Biointerfaces Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf B Biointerfaces. 2017;152:77–84. doi:10.1016/j.colsurfb.2017.01.01028088015
  • Mortera R, Vivero-Escoto J, Slowing II, Garrone E, Onida B, Lin VS. Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chem Commun. 2009;(22):3219–3221. doi:10.1039/b900559e
  • Ma X, Nguyen KT, Borah P, Ang CY, Zhao Y. Functional silica nanoparticles for redox-triggered Drug/ssDNA co-delivery. Adv Healthc Mater. 2012;1(6):690–697. doi:10.1002/adhm.20120012323184818
  • Nadrah P, Porta F, Planinsek O, Krosb A, Gabersek M. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better. Phys Chem Chem Phys. 2013;15:10740–10748. doi:10.1039/c3cp44614j23689395
  • Zhang J, Niemelä M, Westermarck J, Rosenholm JM. Mesoporous silica nanoparticles with redoxresponsive surface linkers for charge-reversible loading and release of short oligonucleotide. Dalt Trans. 2014;43:4115–4126. doi:10.1039/c3dt53071j
  • Torney F, Trewyn BG, Lin VS-Y, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. 2007;2:295–300. doi:10.1038/nnano.2007.10818654287
  • Giri S, Trewyn BG, Stellmaker MP, Lin VS-Y. Stimuli-Responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem. 2005;117:5166–5172. doi:10.1002/ange.200501819
  • Yi Z, Hussain HI, Feng C, et al. Functionalized mesoporous silica nanoparticles with redox- responsive short-chain gatekeepers for agrochemical delivery. ACS Appl Mater Interfaces. 2015;7(18):9937–9946. doi:10.1021/acsami.5b0213125902154
  • Gong H, Xie Z, Liu M, Zhu H, Sun H. Redox-sensitive mesoporous silica nanoparticles functionalized with PEG through a disulfide bond linker for potential anticancer drug delivery. RSC Adv. 2015;5:59576–59582. doi:10.1039/C5RA09774F
  • Palanikumar L, Choi ES, Cheon JY, Joo SH, Ryu J-H. Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform. Adv Funct Mater. 2014;25(6):957–965. doi:10.1002/adfm.201402755
  • Gimenez C, De La Torre C, Gorbe M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. Langmuir. 2015;31(12):3753–3762. doi:10.1021/acs.langmuir.5b0013925742160
  • Liu R, Zhao X, Wu T, Feng P. Tunable redox-responsive hybrid nanogated ensembles. Jacs. 2008;130:14418–14419. doi:10.1021/ja8060886
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7(7):189. doi:10.3390/nano7120458
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Publ Gr. 2013;12(11):991–1003.
  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8–23. doi:10.1016/j.cis.2011.04.00321601820
  • Torres-Lugo M, Rinaldi C. Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine. 2013;8(10):1689–1707. doi:10.2217/nnm.13.14624074390
  • Guisasola E, Baeza A, Talelli M, et al. Magnetic-responsive release controlled by hot spot effect. Langmuir. 2015;31(46):12777–12782. doi:10.1021/acs.langmuir.5b0347026536300
  • Baeza A, Guisasola E, Ruiz-Herna E, Vallet-Regí M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater. 2012;24:517−524. doi:10.1021/cm203000u
  • Thomas CR, Ferris DP, Lee J, et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. Jacs. 2010;132:10623–10625. doi:10.1021/ja1022267
  • Ferris DP, Zhao Y, Khashab NM, Khatib HA, Stoddart JF, Zink JI. Light-operated mechanized nanoparticles. Jacs. 2009;131:1686–1688.
  • Wu S, Butt H-J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv Mater. 2016;28:1208–1226.26389516
  • Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A. Thermal and photochemical switching of conformation of Poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. Jacs. 2007;129:6396–6397.
  • Wang Z, Johns VK, Liao Y. Controlled release of fragrant molecules with visible light. Chem Eur J. 2014;20:1–5.
  • Mekaru JLH, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev. 2015;95:40–49.26434537
  • Guardado-Álvarez TM, Devi LS, Russell MM, Schwartz BJ, Zink JI. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. Jacs. 2013;135(38):14000–14003.
  • Martínez-Carmona M, Lozano D, Baeza A, Colillaa M, Vallet-Regí M. A novel visible light responsive nanosystem for cancer treatment. Nanoscale. 2017;9(41):15967–15973.29019495
  • Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2011;62(11):1064–1079.
  • Tong L, Wei Q, Wei A, Cheng J. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol. 2009;85:21–32.19161395
  • Ke H, Wang J, Dai Z, et al. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Int Ed Chemie. 2011;50:3017–3021.
  • Wang X, Tan -L-L, Li X, et al. Smart mesoporous silica nanoparticles gated by pillararene-modified gold nanoparticles for on-demand cargo release. Chem Commun. 2016;52:13775–13778.
  • Vivero-Escoto JL, Slowing II, Wu C-W, Lin VS-Y. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. Jacs. 2009;131:3462–3463.
  • Suit HD, Gerweck LE. Potential for hyperthermia and radiation therapy. Cancer Res. 1979;39:2290–2298.36224
  • Deswal K, Chohan IS. Effects of hyperthermia on enzymes and electrolytes in blood and cerebrospinal fluid in dogs. Int J Biometeor. 1981;25(3):227–233.
  • González-Domíngez E, Iturrioz-Rodríguez N, Padín-González E, et al. Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible. Int J Nanomed. 2017;12:6317–6328.
  • Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9:51–63. doi:10.2147/IJN.S2659224872703
  • Hu L, Mao Z, Zhang Y, Gao C. Influences of size of silica particles on the cellular endocytosis, exocytosis and cell activity of HepG2 cells. J Nanosci Lett. 2011;1(1):1–16.
  • Freeman EC, Weiland LM, Meng WS. Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiescale modeling. J Biomater Sci Poly Ed. 2014;24(4):398–416. doi:10.1080/09205063.2012.690282
  • Iturrioz-Rodriguez N, González-Lavado E, Marín- L, Araújo BV, Pérez-Lorenzo M, Fanarraga ML. A biomimetic escape strategy for cytoplasm invasion by synthetic particles. Angew Int Ed Chemie. 2017;56(44):13736–13740. doi:10.1002/anie.201707769
  • Nelson N. Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci. 1991;12:71–75.1827218
  • Wu M, Meng Q, Chen Y, et al. Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv Mater. 2016;28:1963–1969. doi:10.1002/adma.20150552426743228
  • Shen J, Kim H, Su H, et al. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics. 2014;4:487–497. doi:10.7150/thno.826324672582
  • Ma D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale. 2014;6:6415–6425. doi:10.1039/c4nr00018h24837409
  • Zhang X, Li F, Guo S, et al. Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials. 2014;35(11):3650–3665. doi:10.1016/j.biomaterials.2014.01.01324462359
  • Crombez L, Charnet A, Morris MC, Aldrian-Herrada G, Heitz F, Divita G. A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans. 2007;35:44–46. doi:10.1042/BST035004417233597
  • Nakase I, Akita H, Kogure K, et al. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res. 2012;45(7):1132–1139. doi:10.1021/ar200256e22208383
  • Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle e PEI e Fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials. 2013;34:1391–1401. doi:10.1016/j.biomaterials.2012.10.07223164421
  • Agostini A, Mondragón L, Bernardos A, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Int Ed Chemie. 2012;51:1–6. doi:10.1002/anie.201204663
  • Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25:1–33. doi:10.1002/adma.201205292
  • Shi Y, Hélary C, Haye B, Coradin T. Extracellular versus Intracellular Degradation of Nanostructured Silica Particles. Langmuir. 2018;34:406–415. doi:10.1021/acs.langmuir.7b0223129224358
  • Chen D, Hao N, Liu H, et al. In vitro degradation behavior of silica nanoparticles under physiological conditions in vitro degradation behavior of silica nanoparticles under physiological conditions. J Nanosci Nanotechnol. 2012;12:6346–6354.22962747
  • Huang X, Young NP, Townley HE. Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomater Nanotechnol. 2014;4(2):1–15. doi:10.5772/58290
  • Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9(11):11023–11033. doi:10.1021/acsnano.5b0437826456489
  • Cauda V, Argyo C, Bein T. Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem. 2010;20:8693–8699. doi:10.1039/c0jm01390k
  • Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K. Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater. 2012;24:1462−1471. doi:10.1021/cm3001688
  • Braun K, Pochert A, Beck M, Fiedler R. Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol-Gel Sci Technol. 2016;79(2):319–327. doi:10.1007/s10971-016-4053-9
  • Roggers RA, Joglekar M, Valenstein JS, Trewyn BG. Mimicking red blood cell lipid membrane to enhance the hemocompatibility of large-pore mesoporous silica. ACS Appl Mater Interfaces. 2014;6(3):1675–1681. doi:10.1021/am404571324417657
  • Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine NBM. 2012;8(2):212–220. doi:10.1016/j.nano.2011.06.002
  • He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and pegylation. Small. 2011;7(2):271–280. doi:10.1002/smll.20100145921213393