299
Views
44
CrossRef citations to date
0
Altmetric
Original Research

Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway

, , , , , , & show all
Pages 4491-4502 | Published online: 18 Jun 2019

References

  • Gu WY, Wu CT, Chen JZ, Xiao Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine. 2013;8:2305–2317. doi:10.2147/IJN.S4439323836972
  • Pugazhendhi A, Shobana S, Nguyen DD, et al. Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int J Hydrogen Energy. 2019;44:1431–1440. doi:10.1016/j.ijhydene.2018.11.114
  • Saratale RG, Saratale GD, Shin HS, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res. 2018;25:10164–10183. doi:10.1007/s11356-017-9912-6
  • Kumar PKSM, Ponnusamy VK, Deepthi KR, et al. Controlled synthesis of Pt nanoparticle supported TiO2 nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction. J Mater Chem A. 2018;6:23435–23444. doi:10.1039/C8TA07380E
  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–7308. doi:10.3390/ma811537728793638
  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100:2555–2566. doi:10.1007/s00253-016-7300-726801915
  • Sisubalan N, Sri Ramkumar VS, Pugazhendhi A, et al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles systhesized using the Rubia cordifolia L.leaf extract on MG-63 human osteosaarcoma cell lines. Environ Sci Pollut Res. 2018;25:10482–10492. doi:10.1007/s11356-017-0003-5
  • Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase and antiamyloidogenic effects. Environ Sci Pollut Res. 2018;25:10418–10433. doi:10.1007/s11356-017-9789-4
  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B. 2019;190:86–97. doi:10.1016/j.jphotobiol.2018.11.01430504053
  • Vasantharaj S, Sathiyavimal S, Senthikumar P, LewisOscar F, Pugazhendhi A. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B. 2019;192:74–82. doi:10.1016/j.jphotobiol.2018.12.02530685586
  • Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107–2128. doi:10.2147/IJN.S15754129692609
  • Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi:10.1016/j.nut.2016.05.00127356860
  • Anand SK, Singh J, Gaba A, Tikoo SK. Effect of bovine adenovirus 3 on mitochondria. Vet Res. 2014;45:45. doi:10.1186/1297-9716-45-4524739681
  • Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252. doi:10.1016/j.cell.2006.06.01016814712
  • Wang A, Keita AV, Phan V, et al. Targeting mitochrondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol. 2014;184(9):2516–2527. doi:10.1016/j.ajpath.2014.05.01925034594
  • Niklison-Chirou MV, Dupuy F, Pena LB, et al. Microcin J25 triggers cytochrome c release through irreversible damage of mitochondrial protein and lipids. Int J Biochem Cell B. 2010;42(2):273–281. doi:10.1016/j.biocel.2009.11.002
  • Handa O, Majima A, Onozawa Y, et al. The role of mitochondria-derived reactive oxygen species in the pathogenesis of non-steroidal anti-inflammatory drug-induced small intestinal injury. Free Radic Res. 2014;48:1095–1099. doi:10.3109/10715762.2014.92841124870068
  • Wu B, Iwakiri R, Ootani A, Fujise T, Tsunada S, Fujimoto K. Platelet activating factor promotes mucosal apoptosis via FasL mediating caspase-9 active pathway in rat small intestine after ischemia-reperfusion. Faseb J. 2003;17(9):1156–1158. doi:10.1096/fj.02-0499fje12709415
  • Urbankova L, Horky P, Skladanka J, et al. Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium. Peer J. 2018;6:e4862. doi:10.7717/peerj.486229868274
  • Xu C, Qiao L, Guo Y, Ma L, Cheng Y. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohyd Polym. 2018;195:576–585. doi:10.1016/j.carbpol.2018.04.110
  • Huang Q, Xu W, Bai KW, et al. Protective effects of leucin on redox status and mitochondrial-related gene abundance in the jejunum of intrauterine growth-retarded piglets during early weaning period. Arch Anim Nutr. 2017;71(2):93–107. doi:10.1080/1745039X.2017.127971228118753
  • Zhang J, Tong W, Sun H, et al. Nrf2-mediated neuroprotection by MANF against 6-OHDA-induced cell damage via PI3K/AKT/GSK3beta pathway. Exp Gerontol. 2017;100:77–86. doi:10.1016/j.exger.2017.10.02129079145
  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19. doi:10.1097/WOX.0b013e318243961323268465
  • Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177–203. doi:10.1146/annurev.physiol.010908.16311919575678
  • Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol. 2015;3:62. doi:10.3389/fcell.2015.0006226484345
  • Nazli A, Yang PC, Jury J, et al. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol. 2004;164:947–957. doi:10.1016/S0002-9440(10)63131-814982848
  • Nazli A, Wang A, Steen O, et al. Enterocyte cytoskeletal changes are crucial for enhanced translocation of nonpathogenic Escherichia coli across metabolically stressed gut epithelium. Infect Immun. 2006;74:192–201. doi:10.1128/IAI.74.1.192-201.200616368973
  • Tait SWG, Green DR. Mitochondria and cell signaling. J Cell Sci. 2012;125(4):807–815. doi:10.1242/jcs.09923422448037
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signaling. Nat Rev Mol Cell Biol. 2012;13:780–788. doi:10.1038/nrm347923175281
  • Baraboi VA, Shestakova EN. Selenium: the biological role and antioxidant activity. Ukr Biokhim Zh (1999). 2004;76(1):23–32.15909414
  • Ferguson LR, Karunasinghe N, Zhu S, et al. Selenium and it’s role in the maintenance of genomic stability. Mutat Res. 2004;33(1):100–110.
  • Sadeghian S, Kojouri GA, Mohebbi A. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biol Trace Elem Res. 2012;146(3):302–308. doi:10.1007/s12011-011-9266-822127831
  • Kojouri GA, Sharifi S. Preventing effects of nano-selenium particles on serum concentration of blood urea nitrogen, creatinine, and total protein during intense exercise in donkey. J Equine Vet Sci. 2013;33(8):597–600. doi:10.1016/j.jevs.2012.09.008
  • Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on sele-noenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42(10):1524–1533. doi:10.1016/j.freeradbiomed.2006.10.03817448899
  • Sonkusre P, Singh Cameotra S. Biogenic selenium nanoparticles inhibit Staphylococcus aureus adherence on different surfaces. Colloids Surf B Biointerfaces. 2015;136:1051–1057. doi:10.1016/j.colsurfb.2015.10.05226590898
  • Srivastava N, Mukhopadhyay M. Biosynthesis and structural characterization of selenium nanoparticles mediated by zooglea ramigera. Powder Technol. 2013;244:26–29. doi:10.1016/j.powtec.2013.03.050
  • Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci. 2009;54:246–254. doi:10.1007/s10620-008-0361-418612820
  • des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nano-particles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27. doi:10.1016/j.jconrel.2006.08.01317050027
  • Torres SK, Campos VL, León CG, et al. Biosynthesis of selenium nanoparticles by pantoea agglomerans and their antioxidant activity. J Nanopart Res. 2012;14(11):1236. doi:10.1007/s11051-012-1236-3
  • Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointes-tinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol. 2013;3(1–2):163–210. doi:10.1504/IJBNN.2013.054515
  • Suzuki T, Yamamoto M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem. 2017;292:16817–16824. doi:10.1074/jbc.R117.80016928842501
  • Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med. 2004;36:1208–1213. doi:10.1016/j.freeradbiomed.2004.02.07515110385
  • Yanaka A. Role of Nrf2 in protection of the gastrointestinal tract against oxidative stress. J Clin Biochem Nutr. 2018;63(1):18–25.30087539
  • Song D, Cheng YY, Li X, et al. Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces. 2017;9(17):14724–14740. doi:10.1021/acsami.7b0337728406025