251
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus

, , , &
Pages 3583-3600 | Published online: 16 May 2019

References

  • O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95. doi:10.1016/S1369-7021(11)70058-X
  • Behzadi S, Luther GA, Harris MB, et al. Nanomedicine for safe healing of bone trauma: opportunities and challenges. Biomaterials. 2017;146:168–182. doi:10.1016/j.biomaterials.2017.09.00528918266
  • Besinis A, De Peralta T, Tredwin CJ, et al. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano. 2015;9(3):2255–2289. doi:10.1021/nn505015e25625290
  • Penkov OV, Pukha VE, Starikova SL, et al. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants. Biomaterials. 2016;102:130–136. doi:10.1016/j.biomaterials.2016.06.02927336185
  • de Jonge LT, Leeuwenburgh SCG, van Den Beucken JJJP, et al. The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials. 2010;31(9):2461–2469. doi:10.1016/j.biomaterials.2009.11.11420022365
  • Roohani-Esfahani S-I, Nouri-Khorasani S, Lu Z, et al. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials. 2010;31(21):5498–5509. doi:10.1016/j.biomaterials.2010.03.05820398935
  • Balani K, Anderson R, Laha T, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials. 2007;28(4):618–624. doi:10.1016/j.biomaterials.2006.09.01317007921
  • Descamps S, Awitor KO, Raspal V, et al. Mechanical properties of nanotextured titanium orthopedic screws for clinical applications. J Med Device. 2013;7(2):0210051–0210055. doi:10.1115/1.4023705
  • Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30(6):315–322. doi:10.1016/j.tibtech.2012.02.00522424819
  • Camps-Font O, Figueiredo R, Valmaseda-Castellon E, et al. Postoperative infections after dental implant placement: prevalence, clinical features, and treatment. Implant Dent. 2015;24(6):913–919. (Electronic).
  • Chen X, Leng J, Rakesh KP, et al. Synthesis and molecular docking studies of xanthone attached amino acids as potential antimicrobial and anti-inflammatory agents. Medchemcomm. 2017;8(8):1706–1719. doi:10.1039/c7md00209b30108882
  • Mohammed YHE, Manukumar HM, Rakesh KP, et al. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog. 2018;123:339–347. doi:10.1016/j.micpath.2018.07.00230057355
  • Zha GF, Wang SM, Rakesh KP, et al. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur J Med Chem. 2019;162:364–377. doi:10.1016/j.ejmech.2018.11.01230453245
  • Rodríguez-Cano A, Pacha-Olivenza M-Á, Babiano R, et al. Non-covalent derivatization of aminosilanized titanium alloy implants. Surf CoatTechnol. 2014;245:66–73. doi:10.1016/j.surfcoat.2014.02.041
  • Yang Y, Ao H-Y, Yang S-B, et al. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int J Nanomedicine. 2016;11:2223–2234. doi:10.2147/IJN.S10275227274245
  • Zhang H, Sun Y, Tian A, et al. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO(2) nanotubes: in vivo and in vitro studies. Int J Nanomedicine. 2013;8:4379–4389. doi:10.2147/IJN.S5322124403827
  • Nie B, Long T, Ao H, et al. Covalent immobilization of enoxacin onto titanium implant surfaces for inhibiting multiple bacterial species infection and in vivo methicillin-resistant staphylococcus aureus infection prophylaxis. Antimicrob Agents Chemother. 2017;61:1098–6596. (Electronic). doi:10.1128/AAC.01766-16
  • Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 2016;1(4):89–99. doi:10.1302/2058-5241.1.00003728461934
  • Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1–16. doi:10.3109/17435390.2012.74293523092443
  • Manukumar HM, Chandrasekhar B, Rakesh KP, et al. Novel T-C@AgNPs mediated biocidal mechanism against biofilm associated methicillin-resistant Staphylococcus aureus (Bap-MRSA) 090, cytotoxicity and its molecular docking studies. Medchemcomm. 2017;8(12):2181–2194. doi:10.1039/c7md00486a30108735
  • Zhang X, Manukumar HM, Rakesh KP, et al. Role of BP*C@AgNPs in Bap-dependent multicellular behavior of clinically important methicillin-resistant Staphylococcus aureus (MRSA) biofilm adherence: a key virulence study. Microb Pathog. 2018;123:275–284. doi:10.1016/j.micpath.2018.07.02530041001
  • Besinis A, Hadi SD, Le HR, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology. 2017;11(3):327–338. doi:10.1080/17435390.2017.129989028281851
  • Varaprasad K, Raghavendra GM, Jayaramudu T, et al. Nano zinc oxide–sodium alginate antibacterial cellulose fibres. Carbohydr Polym. 2016;135:349–355. doi:10.1016/j.carbpol.2015.08.07826453887
  • Soren S, Kumar S, Mishra S, et al. Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb Pathog. 2018;119:145–151. doi:10.1016/j.micpath.2018.03.04829596880
  • Happy A, Soumya M, Venkat Kumar S, et al. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact. 2018;286:60–70. doi:10.1016/j.cbi.2018.03.00829551637
  • Talebian N, Amininezhad SM, Doudi M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol. 2013;120:66–73. doi:10.1016/j.jphotobiol.2013.01.004
  • Król A, Pomastowski P, Rafińska K, et al. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interface Sci. 2017;249:37–52. doi:10.1016/j.cis.2017.07.03328923702
  • Cao B, Cai W, Duan G, et al. A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology. 2005;16(11):2567. doi:10.1088/0957-4484/16/11/017
  • Roguska A, Belcarz A, Pisarek M, et al. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles — an unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng. 2015;51:158–166. doi:10.1016/j.msec.2015.02.046
  • Li X, Wang C, Xia N, et al. Novel ZnO-TiO2 nanocomposite arrays on Ti fabric for enhanced photocatalytic application. J Mol Struct. 2017;1148:347–355. doi:10.1016/j.molstruc.2017.07.030
  • Ma Q-L, Ma S, Huang YM. Enhanced photovoltaic performance of dye sensitized solar cell with ZnO nanohoneycombs decorated TiO2 photoanode. Mater Lett. 2018;218:237–240. doi:10.1016/j.matlet.2018.02.028
  • Chansri P, Sung Y-M. Investigations of electrochemical luminescence characteristics of ZnO/TiO2 nanotubes electrode and silica-based gel type solvents. Surf CoatTechnol. 2016;307:1139–1143. doi:10.1016/j.surfcoat.2016.11.009
  • Lin Y-J, Chang G-M, Chang H-C, et al. Responsivity to solar irradiation and the response time of photodetectors that use ZnO nanoparticles with and without thermal annealing in pure oxygen ambient. Optik. 2018;155:157–162. doi:10.1016/j.ijleo.2017.11.012
  • Chia SL, Leong DT. Reducing ZnO nanoparticles toxicity through silica coating. Heliyon. 2016;2(10):e00177. doi:10.1016/j.heliyon.2016.e0017727812550
  • Foroutan T, Mousavi S. The effects of zinc oxide nanoparticles on differentiation of human mesenchymal stem cells to osteoblast. Nanomed J. 2014;1(5):308–314.
  • Ramires PA, Romito A, Cosentino F, et al. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials. 2001;22(12):1467–1474.11374445
  • Ha S-W, Jang HL, Nam KT, et al. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015;65:32–42. doi:10.1016/j.biomaterials.2015.06.03926141836
  • Swank K, Dragoo JL. Postarthroscopic infection in the knee following medical or dental procedures. Case Rep Orthop. 2013;2013:974017.24191214
  • Danookdharree U, Le HR, Tredwin C. The effect of initial etching sites on the morphology of TiO2 nanotubes on Ti-6Al-4V alloy. J Electrochem Soc. 2015;162(10):E213–E222. doi:10.1149/2.0011511jes
  • Liu J, Hosseinpour PM, Luo S, et al. TiO2 nanotube arrays for photocatalysis: effects of crystallinity, local order, and electronic structure. J Vac Sci Technol A. 2015;33(2). doi:10.1116/1.4902350
  • Parcharoen Y, Kajitvichyanukul P, Sirivisoot S, et al. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications. Appl Surf Sci. 2014;311:54–61. doi:10.1016/j.apsusc.2014.04.207
  • Liu W, Su P, Chen S, et al. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale. 2014;6(15):9050–9062. doi:10.1039/c4nr01531b24971593
  • Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1997;46(7):8.
  • Besinis A, De Peralta T, Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8(7):745–754. doi:10.3109/17435390.2013.82534323875717
  • Tsikandylakis G, Berlin O, Branemark R. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants for transhumeral amputees. Clin Orthop Relat Res. 2014;472(10):2947–2956. doi:10.1007/s11999-014-3695-624879569
  • Zhao L, Chu PK, Zhang Y, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res Part B. 2009;91B(1):470–480. doi:10.1002/jbm.b.31463
  • Li L-H, Kim H-W, Lee S-H, et al. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. J Biomed Mater Res Part A. 2005;73A(1):48–54. doi:10.1002/jbm.a.30244
  • Anders CB, Eixenberger JE, Franco NA, et al. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. Environ Sci. 2018;5(2):572–588. doi:10.1039/C7EN00888K
  • Liu X, Tian A, You J, et al. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine. 2016;11:5743–5755. doi:10.2147/IJN.S11367427843315
  • Aarestrup FM, Hasman H. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol. 2004;100(1):83–89. doi:10.1016/j.vetmic.2004.01.01315135516
  • Babich H, Stotzky G. Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Appl Environ Microbiol. 1978;36(6):906–914.736544
  • Baek YW, An YJ. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ. 2011;409:1603–1608. doi:10.1016/j.scitotenv.2011.01.01421310463
  • Reidy B, Haase A, Luch A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295. doi:10.3390/ma606229528809275
  • Saxena V, Hasan A, Pandey LM. Effect of Zn/ZnO integration with hydroxyapatite: a review. Mater Technol. 2018;33(2):79–92. doi:10.1080/10667857.2017.1377972
  • Plette ACC, Benedetti MF, van Riemsdijk WH. Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium. Environ Sci Technol. 1996;30(6):1902–1910. doi:10.1021/es950568l
  • Gunputh UF, Le H, Handy RD, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Mater Sci Eng. 2018;91:638–644. doi:10.1016/j.msec.2018.05.074