91
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Ectopic chondrogenesis of nude mouse induced by nano gene delivery enhanced tissue engineering technology

, , , &
Pages 4755-4765 | Published online: 02 Jul 2019

References

  • Babichenko IK. [Cartilage injury of the patella, femoral condyles and knee in trauma to the knee joint]. Ortop Travmatol Protez. 1970;31:34–39.
  • Hofmann FC, Neumann J, Heilmeier U, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative. Skeletal Radiol. 2018;47:93–106. doi:10.1007/s00256-017-2759-628852821
  • Bao CX, Chen HX, Mou XJ, Zhu XK, Zhao Q, Wang XG. GZMB gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the MAPK signaling pathway. Biomed Pharmacother. 2018;103:346–354. doi:10.1016/j.biopha.2018.04.02329669300
  • Biquet V. [Case of relapsing erythroderma psoriaticum with multiple arthropathies and developing into osteolysis]. Arch Belg Dermatol Syphiligr. 1954;10:58–61.13189546
  • Ito H, Moritoshi F, Hashimoto M, Tanaka M, Matsuda S. Control of articular synovitis for bone and cartilage regeneration in rheumatoid arthritis. Inflamm Regen. 2018;38:7. doi:10.1186/s41232-018-0064-y29692872
  • Qi C, Liu J, Jin Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials. 2018;163:89–104. doi:10.1016/j.biomaterials.2018.02.01629455069
  • Filardo G, Perdisa F, Gelinsky M, et al. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. J Mater Sci Mater Med. 2018;29:74. doi:10.1007/s10856-018-6074-029804259
  • Mathis DT, Kaelin R, Rasch H, Arnold MP, Hirschmann MT. Good clinical results but moderate osseointegration and defect filling of a cell-free multi-layered nano-composite scaffold for treatment of osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthroscopy. 2018;26:1273–1280. doi:10.1007/s00167-017-4638-z
  • Fan MP, Si M, Li BJ, et al. Cell therapy of a knee osteoarthritis rat model using precartilaginous stem cells. Eur Rev Med Pharmacol Sci. 2018;22:2119–2125. doi:10.26355/eurrev_201804_1474529687871
  • Behrou R, Foroughi H, Haghpanah F. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage. J Mech Behav Biomed Mater. 2018;78:214–223. doi:10.1016/j.jmbbm.2017.11.02329174620
  • Aurich M, Koenig V, Hofmann G. Comminuted intraarticular fractures of the tibial plateau lead to posttraumatic osteoarthritis of the knee: current treatment review. Asian J Surg. 2018;41:99–105. doi:10.1016/j.asjsur.2016.11.01128131634
  • Lindstrom E, Rizoska B, Tunblad K, et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J Transl Med. 2018;16:56. doi:10.1186/s12967-018-1425-729523155
  • Dias IR, Viegas CA, Carvalho PP. Large animal models for osteochondral regeneration. Adv Exp Med Biol. 2018;1059:441–501. doi:10.1007/978-3-319-76735-2_2029736586
  • Zhang Y, Zhang J, Chang F, Xu W, Ding J. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Mater Sci Eng C Mater Biol Appl. 2018;88:79–87. doi:10.1016/j.msec.2018.02.02829636141
  • Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med. 2018;6:2325967118761871. doi:10.1177/232596711876187129619397
  • Keller L, Wagner Q, Schwinte P, Benkirane-Jessel N. Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine. Nanomedicine (Lond). 2015;10:2833–2845. doi:10.2217/nnm.15.11326377156
  • Diaz-Flores L Jr., Gutierrez R, Madrid JF, et al. Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Front Biosci (Schol Ed). 2012;4:1275–1294.22652871
  • Stone KR, Pelsis JR, Na K, Walgenbach AW, Turek TJ. Articular cartilage paste graft for severe osteochondral lesions of the knee: a 10- to 23-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2017;25:3824–3833. doi:10.1007/s00167-016-4323-727695904
  • Chun YS, Kim KW, Kim JC. Autologous tragal perichondrium patch graft for ahmed glaucoma valve tube exposure. J Glaucoma. 2013;22:e27–e30. doi:10.1097/IJG.0b013e318255dc1c24299729
  • Wong CC, Chen CH, Chan WP, et al. Single-stage cartilage repair using platelet-rich fibrin scaffolds with autologous cartilaginous grafts. Am J Sports Med. 2017;45:3128–3142. doi:10.1177/036354651771987628892654
  • Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–1179. doi:10.1177/036354651139938221460066
  • Schagemann JC, Erggelet C, Chung HW, Lahm A, Kurz H, Mrosek EH. Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng Part A. 2009;15:75–82. doi:10.1089/ten.tea.2008.008718783325
  • Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced therapy medicinal products: a guide for bone marrow-derived MSC application in bone and cartilage tissue engineering. Tissue Eng Part B Rev. 2018;24:155–169. doi:10.1089/ten.TEB.2017.030528990462
  • Sinkin JC, Yi S, Wood BC, et al. Upper eyelid coloboma repair using accessory preauricular cartilage in a patient with goldenhar syndrome: technique revisited. Ophthalmic Plast Reconstr Surg. 2017;33:e4–e7. doi:10.1097/IOP.000000000000036025514664
  • Donati I, Stredanska S, Silvestrini G, et al. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials. 2005;26:987–998. doi:10.1016/j.biomaterials.2004.04.01515369687
  • Sechriest VF, Miao YJ, Niyibizi C, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res. 2000;49:534–541.10602087
  • Wang W, Wan Y, Fu T, et al. Effect of cyclic compression on bone marrow mesenchymal stromal cells in tissue engineered cartilage scaffold. J Biomed Mater Res A. 2019. doi:10.1002/jbm.a.36642
  • Yuan D, Chen Z, Xiang X, et al. The establishment and biological assessment of a whole tissue-engineered intervertebral disc with PBST fibers and a chitosan hydrogel in vitro and in vivo. J Biomed Mater Res B Appl Biomater. 2019. doi:10.1002/jbm.b.34323
  • Da Silva L, Todaro V, Do Carmo FA, et al. A promising oral fucoidan-based antithrombotic nanosystem: development, activity and safety. Nanotechnology. 2018. doi:10.1088/1361-6528/aaae5b
  • Qiao X, Peng X, Qiao J, et al. Evaluation of a photocrosslinkable hydroxyethyl chitosan hydrogel as a potential drug release system for glaucoma surgery. J Mater Sci Mater Med. 2017;28:149. doi:10.1007/s10856-017-5954-z28831622
  • Buchovec I, Lukseviciute V, Kokstaite R, Labeikyte D, Kaziukonyte L, Luksiene Z. Inactivation of gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization: mechanism of action and new strategies to enhance the inactivation efficiency. J Photochem Photobiol B. 2017;172:1–10. doi:10.1016/j.jphotobiol.2017.05.00828505496
  • Hattori H, Amano Y, Nogami Y, Kawakami M, Yura H, Ishihara M. Development of a novel emergency hemostatic kit for severe hemorrhage. Artif Organs. 2013;37:475–481. doi:10.1111/aor.1200423607586
  • Masuoka K, Ishihara M, Asazuma T, et al. The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials. 2005;26:3277–3284. doi:10.1016/j.biomaterials.2004.07.06115603823
  • Ono K, Saito Y, Yura H, et al. Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res. 2000;49:289–295.10571917
  • Tang B, Shan J, Yuan T, et al. Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydr Polym. 2019;209:198–206. doi:10.1016/j.carbpol.2018.12.10330732799
  • Morsi NM, Nabil Shamma R, Osama Eladawy N, Abdelkhalek AA. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, Saos-2 cell line cell viability and osteogenic markers evaluation. Drug Dev Ind Pharm. 2019;45:1–18.
  • Xu X, Gu Z, Chen X, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019;86:235–246. doi:10.1016/j.actbio.2019.01.00130611793
  • Qu Y, Tang J, Liu L, Song L, Chen S, Gao Y. Alpha-Tocopherol liposome loaded chitosan hydrogel to suppress oxidative stress injury in cardiomyocytes. Int J Biol Macromol. 2019;125:1192–1202. doi:10.1016/j.ijbiomac.2018.09.09230227207
  • Qu C, Bao Z, Zhang X, et al. A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. Int J Biol Macromol. 2019;125:78–86. doi:10.1016/j.ijbiomac.2018.12.05830529347
  • Cheng YH, Ko YC, Chang YF, Huang SH, Liu CJ. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res. 2019;179:179–187. doi:10.1016/j.exer.2018.11.01730471279
  • Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. J Biol Eng. 2019;13:14. doi:10.1186/s13036-019-0144-930805026
  • Bezhaeva T, Geelhoed WJ, Wang D, et al. Contribution of bone marrow-derived cells to in situ engineered tissue capsules in a rat model of chronic kidney disease. Biomaterials. 2019;194:47–56. doi:10.1016/j.biomaterials.2018.12.01430580195
  • Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A. A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. Adv Exp Med Biol. 2018;2:23–36.
  • Sarem M, Arya N, Heizmann M, et al. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater. 2018;69:83–94. doi:10.1016/j.actbio.2018.01.02529378326
  • Patel JM, Merriam AR, Culp BM, Gatt CJ Jr., Dunn MG. One-year outcomes of total meniscus reconstruction using a novel fiber-reinforced scaffold in an ovine model. Am J Sports Med. 2016;44:898–907. doi:10.1177/036354651562491326842311
  • Khurshid M, Mulet-Sierra A, Adesida A, Sen A. Osteoarthritic human chondrocytes proliferate in 3D co-culture with mesenchymal stem cells in suspension bioreactors. J Tissue Eng Regen Med. 2018;12:e1418–e1432. doi:10.1002/term.253128752579
  • Zhou Y, Liang K, Zhao S, et al. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int J Biol Macromol. 2018;108:383–390. doi:10.1016/j.ijbiomac.2017.12.03229225174
  • Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;83:195–201. doi:10.1016/j.msec.2017.09.00229208279
  • Venkatesan JK, Moutos FT, Rey-Rico A, et al. Chondrogenic differentiation processes in human bone marrow aspirates seeded in three-dimensional woven poly(epsilon-caprolactone) scaffolds enhanced by rAAV-mediated SOX9 gene transfer. Hum Gene Ther. 2018. doi:10.1089/hum.2017.165
  • Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm. 2018;546:215–225. doi:10.1016/j.ijpharm.2018.05.04529787895
  • Kretzmann JA, Evans CW, Norret M, Blancafort P, Swaminathan Iyer K. Non-viral methodology for efficient co-transfection. Methods Mol Biol. 2018;1767:241–254. doi:10.1007/978-1-4939-7774-1_1329524139
  • Jia Y, Niu D, Li Q, et al. Effective gene delivery of shBMP-9 using polyethyleneimine-based core-shell nanoparticles in an animal model of insulin resistance. Nanoscale. 2019;11:2008–2016. doi:10.1039/c8nr08193j30644929
  • Terry TL, Givens BE, Rodgers VGJ, Salem AK. Tunable properties of Poly-DL-lactide-monomethoxypolyethylene glycol porous microparticles for sustained release of polyethylenimine-DNA polyplexes. AAPS PharmSciTech. 2019;20:23. doi:10.1208/s12249-018-1215-930604270
  • Mattern-Schain SI, Fisher RK, West PC, et al. Cell mimetic liposomal nanocarriers for tailored delivery of vascular therapeutics. Chem Phys Lipids. 2019;218:149–157. doi:10.1016/j.chemphyslip.2018.12.00930582896
  • Hattori Y, Nakamura M, Takeuchi N, et al. Effect of cationic lipid in cationic liposomes on siRNA delivery into the lung by intravenous injection of cationic lipoplex. J Drug Target. 2019;27:217–227. doi:10.1080/1061186X.2018.150277530024300
  • Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther. 2013;24:914–927. doi:10.1089/hum.2013.251724164239
  • Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27. doi:10.4103/2277-9175.9815223210086
  • Guimont P, Grondin F, Dubois CM. Sox9-dependent transcriptional regulation of the proprotein convertase furin. Am J Physiol Cell Physiol. 2007;293:C172–C83. doi:10.1152/ajpcell.00349.200617360815
  • Gao Z, Xu HG, Zhang XL, et al. [NF-kappaB signaling pathway regulate endplate chondrocytes in rat vitro natural degeneration model]. Zhonghua Yi Xue Za Zhi. 2016;96:2182–2186. doi:10.3760/cma.j.issn.0376-2491.2016.27.01627464547
  • Deng W, Chen W, Clement S, et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat Commun. 2018;9:2713. doi:10.1038/s41467-018-05118-330006596
  • Wonder E, Simon-Gracia L, Scodeller P, et al. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials. 2018;166:52–63. doi:10.1016/j.biomaterials.2018.02.05229544111
  • Motomura M, Ichihara H, Matsumoto Y. Nano-chemotherapy using cationic liposome that strategically targets the cell membrane potential of pancreatic cancer cells with negative charge. Bioorg Med Chem Lett. 2018;28:1161–1165. doi:10.1016/j.bmcl.2018.03.01329534927
  • Digiacomo L, Palchetti S, Pozzi D, Amici A, Caracciolo G, Marchini C. Cationic lipid/DNA complexes manufactured by microfluidics and bulk self-assembly exhibit different transfection behavior. Biochem Biophys Res Commun. 2018;503:508–512. doi:10.1016/j.bbrc.2018.05.01629733845
  • Zhang X, Kong M, Tian MP, et al. The temperature-responsive hydroxybutyl chitosan hydrogels with polydopamine coating for cell sheet transplantation. Int J Biol Macromol. 2018;120:152–158. doi:10.1016/j.ijbiomac.2018.08.01530092308
  • Chen Y, Zhang J, Li J, et al. Triptolide inhibits B7-H1 expression on proinflammatory factor activated renal tubular epithelial cells by decreasing NF-κB transcription. Mol Immunol. 2006;43:1088–1098. doi:10.1016/j.molimm.2005.07.02616129490
  • Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27. doi:10.1016/j.biomaterials.2017.11.02829182933
  • Yin H, Wang Y, Sun Z, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater. 2016;33:96–109. doi:10.1016/j.actbio.2016.01.02426802442
  • Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47(Suppl 1):S47–S51. doi:10.1016/S0020-1383(16)30012-2
  • Kim C, Jeon OH, Kim DH, et al. Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials. 2016;83:93–101. doi:10.1016/j.biomaterials.2015.12.02926773662
  • Panjapheree K, Kamonmattayakul S, Meesane J. Biphasic scaffolds of silk fibroin film affixed to silk fibroin/chitosan sponge based on surgical design for cartilage defect in osteoarthritis. Mater Design. 2018;141:323–332. doi:10.1016/j.matdes.2018.01.006
  • Gandhi M, Bhatt P, Chauhan G, Gupta S, Misra A, Mashru R. IGF-II-conjugated nanocarrier for brain-targeted delivery of p11 gene for depression. AAPS PharmSciTech. 2019;20:50. doi:10.1208/s12249-018-1206-x30617637
  • Bulbake U, Kommineni N, Ionov M, Bryszewska M, Khan W. Comparison of Cationic Liposome and PAMAM Dendrimer for Delivery of Anti-Plk1 siRNA in Breast Cancer Treatment. Pharm Dev Technol. 2019;1–27. doi:10.1080/10837450.2019.1567763
  • Behrendt P, Feldheim M, Preusse-Prange A, et al. Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage. 2018;26:264–275. doi:10.1016/j.joca.2017.11.00729169959
  • Rey-Rico A, Venkatesan JK, Schmitt G, Speicher-Mentges S, Madry H, Cucchiarini M. Effective remodelling of human osteoarthritic cartilage by sox9 Gene transfer and overexpression upon delivery of rAAV vectors in polymeric micelles. Mol Pharm. 2018. doi:10.1021/acs.molpharmaceut.8b00331
  • Jiang M, Fu X, Yang H, Long F, Chen J. mTORC1 signaling promotes limb bud cell growth and chondrogenesis. J Cell Biochem. 2017;118:748–753. doi:10.1002/jcb.2572827606668
  • Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Kamarul T. Platelet-rich concentrate in serum-free medium enhances cartilage-specific extracellular matrix synthesis and reduces chondrocyte hypertrophy of human mesenchymal stromal cells encapsulated in alginate. Platelets. 2019;30:66–74.
  • Hu D, Shan X. Effects of different concentrations of type-I collagen hydrogel on the growth and differentiation of chondrocytes. Exp Ther Med. 2017;14:5411–5416. doi:10.3892/etm.2017.520229163675
  • Hou C, Bai H, Wang Z, et al. A hyaluronan-based nanosystem enables combined anti-inflammation of mTOR gene silencing and pharmacotherapy. Carbohydr Polym. 2018;195:339–348. doi:10.1016/j.carbpol.2018.04.11329804985
  • Digiacomo L, Palchetti S, Pozzi D, Amici A, Caracciolo G, Marchini C. Cationic lipid/DNA complexes manufactured by microfluidics and bulk self-assembly exhibit different transfection behavior. Biochem Biophys Res Commun. 2018. doi:10.1016/j.bbrc.2018.05.016
  • Lechanteur A, Sanna V, Duchemin A, Evrard B, Mottet D, Piel G. Cationic liposomes carrying siRNA: impact of lipid composition on physicochemical properties, cytotoxicity and endosomal escape. Nanomaterials. 2018;8. doi:10.3390/nano8050270