81
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Ultrasmall superparamagnetic nanoparticles targeting E-selectin: synthesis and effects in mice in vitro and in vivo

, , , , , , & show all
Pages 4517-4528 | Published online: 19 Jun 2019

References

  • Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet 2016;387(10022):1012–1024. doi:10.1016/S0140-6736(15)00055-0
  • Chan AT, Grégoire V, Lefebvre JL, et al. Nasopharyngeal cancer: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):83–85. doi:10.1093/annonc/mds266
  • Saba NF, Salama JK, Beitler JJ, et al. ACR Appropriateness criteria® for nasopharyngeal carcinoma. Head Neck. 2016;38(7):979–986. doi:10.1002/hed.2442327131050
  • Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. 2005;365(9476):2041–2054. doi:10.1016/S0140-6736(05)66698-615950718
  • Hui E, Leung S, Au J, et al. Lung metastasis alone in nasopharyngeal carcinoma: a relatively favorable prognostic group. A study by the Hong Kong nasopharyngeal carcinoma study group. Cancer. 2004;101(2):300–306. doi:10.1002/cncr.2035815241827
  • Gout S, Tremblay PL, Huot J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastas. 2008;25(4):335–344. doi:10.1007/s10585-007-9096-4
  • Yasmin-Karim S, King MR, Messing EM, Lee YF. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis. Oncotarget. 2014;5(23):12097–12110. doi:10.18632/oncotarget.250325301730
  • Carrascal M, Silva M, Ferreira J, et al. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochim Biophys Acta. 2018;1862(9):2069–2080. doi:10.1016/j.bbagen.2018.05.013
  • Xia HZ, Du WD, Qiang W, et al. E-selectin rs5361 and FCGR2A rs1801274 variants were associated with increased risk of gastric cancer in a Chinese population. Mol Carcinogen. 2012;51(8):597–607. doi:10.1002/mc.20828
  • Aychek T, Miller K, Sagi-Assif O, et al. E-selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release. Int J Cancer. 2008;123(8):1741–1750. doi:10.1002/ijc.2337518324679
  • Zhang B, Chen H, Yao X, Cong W, Wu M. E-selectin and its ligand-sLeX in the metastasis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2002;1(1):80–82.14607629
  • Påhlsson P, Strindhall J, Srinivas U, Lundblad A. Role of N-linked glycosylation in expression of E-selectin on human endothelial cells. Eur J Immunol. 1995;25(9):2452–2459. doi:10.1002/(ISSN)1521-41417589110
  • Jubeli E, Moine L, Vergnaud-Gauduchon J, Barratt G. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206. doi:10.1016/j.jconrel.2011.09.08421983284
  • Bevilacqua M, Stengelin S, Gimbrone M, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989;243(4895):1160–1165.2466335
  • Polley M, Phillips M, Wayner E, et al. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci USA. 1991;88(14):6224–6228. doi:10.1073/pnas.88.14.62241712483
  • Silva M, Fung R, Donnelly C, Videira P, Sackstein R. Cell-specific variation in E-selectin ligand expression among human peripheral blood mononuclear cells: implications for immunosurveillance and pathobiology. J Immunol. 2017;198(9):3576–3587. doi:10.4049/jimmunol.160163628330896
  • Kang S, Blache C, Bajana S, et al. The effect of soluble E-selectin on tumor progression and metastasis. BMC Cancer. 2016;16:331. doi:10.1186/s12885-016-2366-227220365
  • Häuselmann I, Roblek M, Protsyuk D, et al. Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res. 2016;76(18):5302–5312. doi:10.1158/0008-5472.CAN-16-058427488527
  • Renkonen J, Paavonen T, Renkonen R. Endothelial and epithelial expression of sialyl Lewisx and sialyl Lewisa in lesions of breast carcinoma. Int J Cancer. 1997;74(3):296–300. doi:10.1002/(ISSN)1097-02159221808
  • Jin G, Liu S, Kang W, et al. Quantitative expression analysis of metastasis-related ELAM-1 in nasopharyngeal carcinoma. Int J Clin Exp Med. 2017;10(1):808–813.
  • Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–333. doi:10.1148/radiology.219.2.r01ma1931611323453
  • Weissleder R, Cheng HC, Bogdanova A, Bogdanov A. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging. 2010;7(1):258–263. doi:10.1002/jmri.1880070140
  • Runge V. Current technological advances in magnetic resonance with critical impact for clinical diagnosis and therapy. Invest Radiol. 2013;48(12):869–877. doi:10.1097/01.rli.0000434380.71793.d324126386
  • Taylor A, Panting J, Keegan J, et al. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging. 1999;9(2):220–227. doi:10.1002/(SICI)1522-2586(199902)9:2<220::AID-JMRI11>3.0.CO;2-A10077017
  • Leung K. Molecular Imaging and Contrast Agent Database. Bethesda, MD: National Center for Biotechnology Information; 2004.
  • Sun S, Zeng H, Robinson D, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004;126(1):273–279. doi:10.1021/ja047044i14709092
  • Wang A, Farokhzad O. Current progress of aptamer-based molecular imaging. J Nucl Med. 2014;55(3):353–356. doi:10.2967/jnumed.113.12614424525205
  • Zhong L, Huot J, Simard M. p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep-UK. 2018;8(1):2334. doi:10.1038/s41598-018-20837-9
  • Liu J, Liu Z, Hu X, Zhang Y, Zhang S. Synthetic E-selectin prevents postoperative vascular restenosis by inhibiting nuclear factor κB in rats. Mol Med Rep. 2018;17(4):5065–5073. doi:10.3892/mmr.2018.857229393453
  • Kaila N, Thomas B. Design and synthesis of sialyl Lewis(x) mimics as E- and P-selectin inhibitors. Med Res Rev. 2002;22(6):566–601. doi:10.1002/med.1001812369089
  • Ma X, Tao H, Yang K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012;5(3):199–212. doi:10.1007/s12274-012-0200-y
  • Kazmierczak P, Schneider M, Habereder T, et al. αvß3-Integrin-targeted magnetic resonance imaging for the assessment of early antiangiogenic therapy effects in orthotopic breast cancer xenografts. Invest Radiol. 2016;51(11):746–755. doi:10.1097/RLI.000000000000027827082316
  • Jayapaul J, Arns S, Bunker M, et al. Evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts. Nano Res. 2016;9(5):1319–1333. doi:10.1007/s12274-016-1028-727738498
  • Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB. In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci. 2015;16(10):24417–24450. doi:10.3390/ijms16102441726501258
  • Klohs J, Deistung A, Ielacqua G, et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. J Cereb Blood Flow Metab. 2016;36(9):1614–1624. doi:10.1177/0271678X1562150026661253
  • Kuhlpeter R, Dahnke H, Matuszewski L, et al. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology. 2007;245(2):449–457. doi:10.1148/radiol.245106134517848680
  • Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–2179. doi:10.1053/euhj.2001.282211913479
  • Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–1449. doi:10.1148/rg.29509503419755604
  • Liu Y, Yang K, Cheng L, et al. PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomedicine. 2013;9(7):1077–1088. doi:10.1016/j.nano.2013.04.01023499668
  • Passemard S, Staedler D, Učňová L, et al. Convenient synthesis of heterobifunctional poly(ethylene glycol) suitable for the functionalization of iron oxide nanoparticles for biomedical applications. Bioorg Med Chem Lett. 2013;23(17):5006–5010. doi:10.1016/j.bmcl.2013.06.03723860589
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;39(35):2064–2110. doi:10.1021/cr068445e
  • Shahnaz G, Kremser C, Reinisch A, et al. Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles. Eur J Pharm Biopharm. 2013;85(3 Pt A):346–355. doi:10.1016/j.ejpb.2013.02.01023481176
  • Alam MH, He T, Auger D, et al. Validation of T2* in-line analysis for tissue iron quantification at 1.5 T. J Cardiov Magn Reson. 2016;18(1):1–7. doi:10.1186/s12968-016-0243-4
  • Camargo GC, Rothstein T, Junqueira FP, et al. Comparison of myocardial T1 and T2 values in 3 T with T2* in 1.5 T in patients with iron overload and controls. Int J Hematol. 2016;103(5):530–536. doi:10.1007/s12185-016-1950-126872908
  • Van Zijl PC, Artemov D, Chan KW, et al. Use of non-labeled sugars and detection by MRI for assessing tissue perfusion and metabolism. U.S. Patent 9,180,211 2015 11 10.
  • Reynolds PR, Larkman DJ, Haskard DO, et al. Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology. 2006;241(2):469–476. doi:10.1148/radiol.241305153517005768
  • Sakhalkar H, Dalal M, Salem A, et al. Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proc Natl Acad Sci USA. 2003;100(26):15895–15900. doi:10.1073/pnas.263143310014668435
  • Boutry S, Laurent S, Elst L, Muller R. Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol I. 2006;1(1):15–22. doi:10.1002/cmmi.87
  • McLachlan S, Morris M, Lucas M, et al. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging. 1994;4(3):301–307. doi:10.1002/jmri.18800403138061425
  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175(2):489–493. doi:10.1148/radiology.175.2.\23264742326474