613
Views
51
CrossRef citations to date
0
Altmetric
Original Research

 The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity

, , , , , , , , , & show all
Pages 2655-2665 | Published online: 23 Apr 2019

References

  • Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7757. doi:10.1021/ja062677d16771487
  • Luo PJG, Sahu S, Yang ST, et al. Carbon “quantum” dots for optical bioimaging. J Mater Chem B. 2013;1(16):2116–2127. doi:10.1039/c3tb00018d
  • Luo PJG, Yang F, Yang ST, et al. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014;4(21):10791–10807. doi:10.1039/c3ra47683a
  • Yang ST, Wang X, Wang HF, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C. 2009;113(42):18110–18114. doi:10.1021/jp9085969
  • Ding CQ, Zhu AW, Tian Y. Functional surface engineering of C-Dots for fluorescent biosensing and in vivo bioimaging. Accounts Chem Res. 2014;47(1):20–30. doi:10.1021/ar400023s
  • Fernando KAS, Sahu S, Liu YM, et al. Carbon quantum dots and applications in photocatalytic energy conversion. Acs Appl Mater Int. 2015;7(16):8363–8376. doi:10.1021/acsami.5b00448
  • Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115(11):4744–4822. doi:10.1021/cr500304f26012488
  • Hutton GAM, Martindale BCM, Reisner E. Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev. 2017;46(20):6111–6123. doi:10.1039/c7cs00235a28664961
  • LeCroy GE, Yang ST, Yang F, et al. Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coordin Chem Rev. 2016;320:66–81. doi:10.1016/j.ccr.2016.02.017
  • Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother. 2017;87:209–222. doi:10.1016/j.biopha.2016.12.10828061404
  • Peng ZL, Han X, Li SH, et al. Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coordin Chem Rev. 2017;343:256–277. doi:10.1016/j.ccr.2017.06.001
  • Roy P, Chen PC, Periasamy AP, Chen YN, Chang HT. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today. 2015;18(8):447–458. doi:10.1016/j.mattod.2015.04.005
  • Hu Y, Al Awak MM, Yang F, et al. Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J Mater Chem C. 2016;4(44):10554–10561. doi:10.1039/C6TC03666J
  • Yuan FL, Li SH, Fan ZT, Meng XY, Fan LZ, Yang SH. Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today. 2016;11(5):565–586. doi:10.1016/j.nantod.2016.08.006
  • Zuo PL, Lu XH, Sun ZG, Guo YH, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta. 2016;183(2):519–542. doi:10.1007/s00604-015-1705-3
  • Wang J, Tang L, Zeng G, et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl Catal B. 2018;222:115–123. doi:10.1016/j.apcatb.2017.10.014
  • Deng Y, Tang L, Feng C, et al. Construction of plasmonic ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight. ACS Appl Mater Inter. 2017;9(49):42816–42828. doi:10.1021/acsami.7b14541
  • Havrdova M, Hola K, Skopalik J, et al. Toxicity of carbon dots – effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi:10.1016/j.carbon.2015.12.027
  • Juzenas P, Kleinauskas A, Luo PG, Sun YP. Photoactivatable carbon nanodots for cancer therapy. Appl Phys Lett. 2013;103(6). doi:10.1063/1.4817787
  • Markovic ZM, Ristic BZ, Arsikin KM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials. 2012;33(29):7084–7092. doi:10.1016/j.biomaterials.2012.06.06022795854
  • Al Awak MM, Wang P, Wang SY, Tang YA, Sun YP, Yang LJ. Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Adv. 2017;7(48):30177–30184. doi:10.1039/C7RA05397E29177045
  • Hou XF, Hu Y, Wang P, et al. Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon. 2017;122:389–394. doi:10.1016/j.carbon.2017.06.09329176908
  • Lim SY, Shen W, Gao ZQ. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362–381. doi:10.1039/c4cs00269e25316556
  • Meziani MJ, Dong XL, Zhu L, et al. Visible-light-activated bactericidal functions of carbon “Quantum” dots. Acs Appl Mater Inter. 2016;8(17):10761–10766. doi:10.1021/acsami.6b01765
  • Ristic BZ, Milenkovic MM, Dakic IR, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35(15):4428–4435. doi:10.1016/j.biomaterials.2014.02.01424612819
  • Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N. Bactericidal laser ablation of carbon dots: an in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photochem Photobiol B. 2017;166:323–332. doi:10.1016/j.jphotobiol.2016.12.00628024283
  • Stankovic NK, Bodik M, Siffalovic P, et al. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots langmuir-blodgett thin films. ACS Sustain Chem Eng. 2018;6(3):4154-+. doi:10.1021/acssuschemeng.7b04566
  • Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.01831
  • Liu J-H, Anilkumar P, Cao L, et al. Cytotoxicity evaluations of fluorescent carbon nanoparticles. Nano Life. 2010;01(01n02):153–161. doi:10.1142/S1793984410000158
  • Zhao F, Zhao Y, Liu Y, Chang XL, Chen CY, Zhao YL. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337. doi:10.1002/smll.20110000121520409
  • LeCroy GE, Sonkar SK, Yang F, et al. Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano. 2014;8(5):4522–4529. doi:10.1021/nn406628s24702526
  • Yang F, LeCroy GE, Wang P, et al. Functionalization of carbon nanoparticles and defunctionalization-toward structural and mechanistic elucidation of carbon “Quantum” dots. J Phys Chem C. 2016;120(44):25604–25611. doi:10.1021/acs.jpcc.6b08171
  • Liu YM, Wang P, Fernando KAS, et al. Enhanced fluorescence properties of carbon dots in polymer films. J Mater Chem C. 2016;4(29):6967–6974. doi:10.1039/C6TC01932C
  • Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP. Functionalizing multiple-walled carbon nanotubes with aminopolymers. J Phys Chem B. 2002;106(6):1294–1298. doi:10.1021/jp013501v
  • Ge L, Pan NY, Jin JR, et al. Systematic comparison of carbon dots from different preparations-consistent optical properties and photoinduced redox characteristics in visible spectrum and structural and mechanistic implications. J Phys Chem C. 2018;122(37):21667–21676. doi:10.1021/acs.jpcc.8b06998
  • Dong XL, Moyer MM, Yang F, Sun YP, Yang LJ. Carbon Dots’ antiviral functions against noroviruses. Sci Rep-UK. 2017;7:519. doi: 10.1038/s41598-017-00675-x.
  • Abbaszadegan A, Ghahramani Y, Gholami A, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015. doi:10.1155/2015/720654
  • Lee KJ, Browning LM, Nallathamby PD, Xu XH. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol. 2013;26(6):904–917. doi:10.1021/tx400087d23621491
  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu XF. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ. 2014;468:968–976. doi:10.1016/j.scitotenv.2013.09.00624091120
  • Van Phu D, Quoc LA, Duy NN, et al. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers. Nanoscale Res Lett. 2014;9(1):162. doi: 10.1186/1556-276X-9-162.