544
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Fabrication and characterization of a titanium dioxide (TiO2) nanoparticles reinforced bio-nanocomposite containing Miswak (Salvadora persica L.) extract – the antimicrobial, thermo-physical and barrier properties

, , , , , , , , & show all
Pages 3439-3454 | Published online: 10 May 2019

References

  • Deng X, Nikiforov AY, Leys C. Antimicrobial nanocomposites for food packaging In: Grumezescu AM, editor. Food Preservation: Nanotechnology in the Agri-Food Industry. Vol. 6 Uk & USA: Academic Press; 2017:1–34.
  • Debeaufort F. Hydrocolloids as edible or active packaging materials In: Williams PA, Phillips GO, editors. Gums and Stabilisers for the Food Industry- the Changing Face of Food Manufacture: The Role of Hydrocolloids. Vol. 17 UK: Royal Society of Chemistry; 2014:271–286.
  • Ahmadi R, Ghanbarzadeh B, Ayaseh A, et al. The antimicrobial bio-nanocomposite containing non-hydrolyzed cellulose nanofiber (CNF) and Miswak (Salvadora persica L.) extract. Carbohydr Polym. 2019;214:15–25. doi:10.1016/j.carbpol.2019.03.01030925983
  • Ghanbarzadeh B, Almasi H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int J Biol Macromol. 2011;48(1):44–49. doi:10.1016/j.ijbiomac.2010.09.01420920525
  • Oun AA, Rhim JW. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym. 2015;127:101–109. doi:10.1016/j.carbpol.2015.03.07325965462
  • Namazi H, Rakhshaei R, Hamishehkar H, Samadi Kafil H. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol. 2016;85:327–334. doi:10.1016/j.ijbiomac.2015.12.07626740467
  • Muppalla SR, Kanatt SR, Chawla SP, Sharma A. Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging Shelf Life. 2014;2(2):51–58. doi:10.1016/j.fpsl.2014.07.002
  • Dashipour A, Razavilar V, Hosseini H, et al. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int J Biol Macromol. 2015;72:606–613. doi:10.1016/j.ijbiomac.2014.09.00625220790
  • Salari M, Sowti-Khiabani M, Rezaei-Mokarram R, Ghanbarzadeh B, Kafil HS. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 2018;84:414–423. doi:10.1016/j.foodhyd.2018.05.037
  • Oun AA, Rhim JW. Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym. 2017;169:467–479. doi:10.1016/j.carbpol.2017.04.04228504170
  • Hasheminya S-M, Rezaei Mokarram R, Ghanbarzadeh B, Hamishekar H, Samadi Kafil H. Physicochemical, mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packaging Shelf Life. 2018;17:196–204. doi:10.1016/j.fpsl.2018.07.003
  • Ghanbari Mehrabani M, Karimian R, Rakhshaei R, et al. Chitin/silk fibroin/TiO 2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity. Int J Biol Macromol. 2018;116:966–976. doi:10.1016/j.ijbiomac.2018.05.10229782987
  • Shi J, Lu L, Guo W, Zhang J, Cao Y. Heat insulation performance, mechanics and hydrophobic modification of cellulose–siO2 composite aerogels. Carbohydr Polym. 2013;98:282–289. doi:10.1016/j.carbpol.2013.05.08223987346
  • Ghanbari Mehrabani M, Karimian R, Mehramouz B, Rahimi M, Samadi Kafil H. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol. 2018;114:961–971. doi:10.1016/j.ijbiomac.2018.03.12829581004
  • Goikuria U, Larranaga A, Vilas JL, Lizundia E. Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohydr Polym. 2017;171:193–201. doi:10.1016/j.carbpol.2017.05.02428578954
  • Murgić ZH, Rešček A, Siročić AP, Krehula LK, Katančić Z. Polymer nanocomposites and antimicrobial activity In: Nanoparticles in Active Polymer Food Packaging. Shropshire, UK: Smithers Pira Technology Ltd; 2015:73–89.
  • Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym. 2017;169:101–107. doi:10.1016/j.carbpol.2017.03.07328504125
  • Oleyaei SA, Almasi H, Ghanbarzadeh B, Moayedi AA. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: thermal, mechanical and barrier properties. Carbohydr Polym. 2016;152:253–262. doi:10.1016/j.carbpol.2016.07.04027516271
  • Halawany HS. A review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dental J. 2012;24(2):63–69. doi:10.1016/j.sdentj.2011.12.004
  • Sofrata AH, Claesson RL, Lingstrom PK, Gustafsson AK. Strong antibacterial effect of miswak against oral microorganisms associated with periodontitis and caries. J Periodontol. 2008;79(8):1474–1479. doi:10.1902/jop.2008.07050618672998
  • Mohamed SA, Khan JA. Antioxidant capacity of chewing stick miswak Salvadora persica. BMC Complement Altern Med. 2013;13(40):40. doi:10.1186/1472-6882-13-11823432926
  • Balto H, Al-Sanie I, Al-Beshri S, Aldrees A. Effectiveness of Salvadora persica extracts against common oral pathogens. Saudi Dental J. 2017;29(1):1–6. doi:10.1016/j.sdentj.2016.11.001
  • Balto H, Al-Manei KK, Bin-Mohareb TM, Shakoor ZA, Al-Hadlaq SM. Cytotoxic effect of Salvadora persica extracts on human gingival fibroblast cells. Saudi Med J. 2014;35(8):810–815.25129178
  • Chaurasia A, Patil R, Nagar A. Miswak in oral cavity – an update. J Oral Biol Craniofacl Res. 2013;3(2):98–101. doi:10.1016/j.jobcr.2012.09.004
  • Chelli-Chentouf N, Tir Touil Meddah A, Mullie C, Aoues A, Meddah B. In vitro and in vivo antimicrobial activity of Algerian Hoggar Salvadora persica L. extracts against microbial strains from children‘s oral cavity. J Ethnopharmacol. 2012;144(1):57–66. doi:10.1016/j.jep.2012.08.02522963838
  • Al-Sohaibani S, Murugan K. Anti-biofilm activity of Salvadora persica on cariogenic isolates of Streptococcus mutans: in vitro and molecular docking studies. Biofouling. 2012;28(1):29–38. doi:10.1080/08927014.2011.64730822235758
  • Bahabri FS. Application of spectroscopic techniques for the identification of organic and inorganic constituents of Salvadora persica from Saudi Arabia. Physica A. 2000;276:346–351. doi:10.1016/S0378-4371(99)00278-2
  • Farag MA, Fahmy S, Choucry MA, Wahdan MO, Elsebai MF. Metabolites profiling reveals for antimicrobial compositional differences and action mechanism in the toothbrushing stick “miswak” Salvadora persica. J Pharm Biomed Anal. 2017;133:32–40. doi:10.1016/j.jpba.2016.11.01827863835
  • Noumi E, Snoussi M, Merghni A, et al. Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb Pathog. 2017;109:169–176. doi:10.1016/j.micpath.2017.05.03628552808
  • Taha Khalil A. Benzylamides from Salvadora persica. Arch Pharmacal Res. 2006;29(11):952–956. doi:10.1007/BF02969277
  • Sofrata A, Santangelo EM, Azeem M, Borg-Karlson AK, Gustafsson A, Putsep K. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against gram-negative bacteria. PLoS One. 2011;6(8):e23045. doi:10.1371/journal.pone.002304521829688
  • Al-Ayed MS, Asaad AM, Qureshi MA, Attia HG, AlMarrani AH. Antibacterial activity of Salvadora persica L. (miswak) extracts against multidrug resistant bacterial clinical isolates. Evid Based Complement Alternat Med. 2016;2016:7083964. doi:10.1155/2016/504052826904146
  • Fallah M, Fallah F, Kamalinejad M, Malekan MA, Akhlaghi Z, Esmaeili M. The antimicrobial effect of aquatic extract of Salvadora persica on Mycobacterium bovis in vitro. Int J Mycobacteriol. 2015;4:167–168. doi:10.1016/j.ijmyco.2014.10.043
  • Rasouli Ghahroudi AA, Rezaei A, Mohseni Salehifard SH, et al. Inhibitory activity of Salvadora persica extracts against oral bacterial strains associated with periodontitis: an in-vitro study. J Oral Biol Craniofacl Res. 2014;4(1):19–23. doi:10.1016/j.jobcr.2014.01.001
  • ASTM. Standard test methods for water vapor transmission of materials In: E96-05 Annual Book of ASTM. Philadelphia,PA: American Society for Testing and Materials; 2005.
  • ASTM. Standard test methods for tensile properties of thin plastic sheeting In: D882-10 Annual Book of ASTM. Philadelphia, PA: American Society for Testing and Materials; 2010.
  • CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard In: CLSI Document M07-A10. 10th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2015:1-87.
  • Moghiminia S, Farsi H, Raissi H. Comparative optical and electrochemical studies of nanostructured NiTiO3 and NiTiO3-TiO2 prepared by a low temperature modified Sol-Gel route. Electrochim Acta. 2014;132:512–523. doi:10.1016/j.electacta.2014.03.166
  • Munawar K, Mansoor MA, Basirun WJ, Misran M, Huang NM, Mazhar M. Single step fabrication of CuO–mnO–2TiO2 composite thin films with improved photoelectrochemical response. RSC Adv. 2017;7:15885–15893. doi:10.1039/C6RA28752B
  • Li JY, Cheng W, Li Y, Xu X, Lin K. Mesoporous TiO2-Carbon beads-one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 2015;7(3):243–254. doi:10.1007/s40820-015-0029-5
  • Zhu J, Yang YT, Wang F, Cao M. Composites of TiO 2 nanoparticles deposited on Ti 3 C 2 MXene nanosheets with enhanced electrochemical performance. JElS. 2016;163(5):A785–A791.
  • Ebrahimzadeh S, Ghanbarzadeh B, Hamishehkar H. Physical properties of carboxymethyl cellulose based nano-biocomposites with graphene nano-platelets. Int J Biol Macromol. 2016;84:16–23. doi:10.1016/j.ijbiomac.2015.11.07426645145
  • Luna-Martínez JF, Hernández-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, González-González VA, Sepúlveda-Guzmán S. Synthesis and optical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films. Carbohydr Polym. 2011;84(1):566–570. doi:10.1016/j.carbpol.2010.12.021
  • Joo S-W. Characterization of self‐assembled phenyl and benzyl isothiocyanate thin films on Au surfaces. Surf Interf Anal. 2006;38:173–177. doi:10.1002/(ISSN)1096-9918
  • Li W, Liu X, Yang Q, Zhang N, Du Y, Zhu H. Preparation and characterization of inclusion complex of benzyl isothiocyanate extracted from papaya seed with beta-cyclodextrin. Food Chem. 2015;184:99–104. doi:10.1016/j.foodchem.2015.03.09125872431
  • Goudarzi V, Shahabi-Ghahfarrokhi I. Development of photo-modified starch/kefiran/TiO2 bio-nanocomposite as an environmentally-friendly food packaging material. Int J Biol Macromol. 2018;116:1082–1088. doi:10.1016/j.ijbiomac.2018.05.13829792956
  • Peng Y, Wu Y, Li Y. Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol. 2013;59:282–289. doi:10.1016/j.ijbiomac.2013.04.01923603075
  • Park S-I, Zhao Y. Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J Agric Food Chem. 2004;52:1933−1939. doi:10.1021/jf034612p15053532
  • Mir SA, Dar BN, Wani AA, Shah MA. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol. 2018;80:141–154. doi:10.1016/j.tifs.2018.08.004
  • Deka BK, Maji TK. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos Part A Appl Sci Manuf. 2011;42(12):2117–2125. doi:10.1016/j.compositesa.2011.09.023
  • Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol. 2016;89:256–264. doi:10.1016/j.ijbiomac.2016.04.07827132884
  • Adilah ZAM, Jamilah B, Hanani ZAN. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll. 2018;74:207–218. doi:10.1016/j.foodhyd.2017.08.017
  • Siripatrawan U, Harte BR. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll. 2010;24(8):770–775. doi:10.1016/j.foodhyd.2010.04.003
  • Nouri A, Yaraki MT, Ghorbanpour M, Wang S. Biodegradable κ-carrageenan-nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. Int J Biol Macromol. 2018;115:227–235. doi:10.1016/j.ijbiomac.2018.04.05129660461
  • Kanmani P, Rhim J-W. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. Int J Biol Macromol. 2014;68:258–266. doi:10.1016/j.ijbiomac.2014.05.01124832986
  • Nouri L, Mohammadi Nafchi A. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with Betel leaves extract. Int J Biol Macromol. 2014;66:254–259. doi:10.1016/j.ijbiomac.2014.02.04424582935
  • Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int J Biol Macromol. 2018;112:523–529. doi:10.1016/j.ijbiomac.2018.01.12429410369
  • Salarbashi D, Tafaghodi M, Bazzaz BSF, Jafari B. Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO2 nanoparticle bionanocomposites. Int J Biol Macromol. 2018;112:852–861. doi:10.1016/j.ijbiomac.2018.01.18229410370
  • López de Dicastillo C, Bustos F, Guarda A, Mj G. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 2016;60:335–344. doi:10.1016/j.foodhyd.2016.03.020
  • Su J-F, Huang Z, Yuan X-Y, Wang X-Y, Li M. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym. 2010;79(1):145–153. doi:10.1016/j.carbpol.2009.07.035
  • Tunc S, Duman O, Polat TG. Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites. Carbohydr Polym. 2016;150:259–268. doi:10.1016/j.carbpol.2016.05.01927312637
  • Jahed E, Khaledabad MA, Almasi H, Hasanzadeh R. Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydr Polym. 2017;164:325–338. doi:10.1016/j.carbpol.2017.02.02228325333
  • Zhou JJ, Wang SY, Gunasekaran S. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J Food Sci. 2009;74(7):N50–56. doi:10.1111/j.1750-3841.2009.01270.x19895492
  • Zolfi M, Khodaiyan F, Mousavi M, Hashemi M. Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films. Int J Biol Macromol. 2014;65:340–345. doi:10.1016/j.ijbiomac.2014.01.01024418333
  • Wang S, Marcone MF, Barbut S, Lim L-T. Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Res Int. 2012;49(1):80–91. doi:10.1016/j.foodres.2012.07.023