119
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Effect of commercial and green synthesized ZnO NPs in murine model of chloroquine-induced pruritus

, , , , &
Pages 3103-3110 | Published online: 01 May 2019

References

  • Vasantharaj S, Sathiyavimal S, Saravanan M, et al. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B. 2019;191:143–149. doi:10.1016/j.jphotobiol.2018.12.02630639996
  • Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res. 2017;10418–10433. doi:10.1007/s11356-017-9789-4
  • Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res. 2018;25(11):10362–10370. doi:10.1007/s11356-017-9367-9
  • Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C. 2018;89:429–443. doi:10.1016/j.msec.2018.03.035
  • Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–769. doi:10.1038/sj.clpt.610040017957183
  • Saratale RG, Saratale GD, Shin HS, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res. 2018;25(11):10164–10183. doi:10.1007/s11356-017-9912-6
  • Sathiyavimal S, Vasantharaj S, Bharathi D, et al. Biogenesis of copper oxide nanoparticles (CuONPs) using sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of gram negative and gram positive bacteria. J Photochem Photobiol B. 2018;188:126–134. doi:10.1016/j.jphotobiol.2018.09.01430267962
  • Wang J, Gao S, Wang S, Xu Z, Wei L. Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int J Nanomedicine. 2018;13:3441. doi:10.2147/IJN.S17762729950828
  • Sarkar S, Makhal A, Baruah S, Mahmood MA, Dutta J, Pal SK. Nanoparticle-sensitized photodegradation of bilirubin and potential therapeutic application. J Phys Chem C. 2012;116(17):9608–9615. doi:10.1021/jp301316e
  • Hanley C, Layne J, Punnoose A, et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19(29):295103. doi:10.1088/0957-4484/19/29/29510318836572
  • Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325–2331. doi:10.1128/AEM.02149-1021296935
  • Fakhar-e-Alam M, Rahim S, Atif M, et al. ZnO nanoparticles as drug delivery agent for photodynamic therapy. Laser Phys Lett. 2013;11(2):025601. doi:10.1088/1612-2011/11/2/025601
  • Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2019;14:87. doi:10.2147/IJN.S18688830587987
  • Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018;13:8487. doi:10.2147/IJN.S17762730587973
  • Gupta M, Mahajan VK, Mehta KS, Chauhan PS. Zinc therapy in dermatology: a review. Dermatol Res Pract. 2014;2014:709152. doi:10.1155/2014/709152
  • Aksoy B, Atakan N, Aksoy HM, et al. Effectiveness of topical zinc oxide application on hypertrophic scar development in rabbits. Burns. 2010;36(7):1027–1035. doi:10.1016/j.burns.2010.01.02020381965
  • Bhagwat D, Glassman D, Glassman BP. Topical pharmaceutical base with anti-pruritic and/or anti-inflammatory drugs. Patent No: 6,495,602 B1. 2002 Dec 17. Google Pat. Fairfield (NJ): Bradley Pharmaceuticals, Inc.; 2002.
  • Wang C, Cheng K, Zhou L, et al. Evaluation of long-term toxicity of oral zinc oxide nanoparticles and zinc sulfate in mice. Biol Trace Elem Res. 2017;178(2):276–282. doi:10.1007/s12011-017-0934-128120304
  • Srivastav AK, Kumar A, Prakash J, et al. Genotoxicity evaluation of zinc oxide nanoparticles in Swiss mice after oral administration using chromosomal aberration, micronuclei, semen analysis, and RAPD profile. Toxicol Ind Health. 2017;33(11):821–834. doi:10.1177/074823371771784228950792
  • Wang C, Lu J, Zhou L, et al. Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS One. 2016;11(10):e0164434. doi:10.1371/journal.pone.016443427732669
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(1):3. doi:10.1186/1477-3155-2-315119954
  • Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539(1–2):104–111. doi:10.1016/j.ijpharm.2018.01.03429366941
  • Baek M, Chung H-E, Yu J, et al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine. 2012;7:3081. doi:10.2147/IJN.S3063122811602
  • Ng CT, Yong LQ, Hande MP, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine. 2017;12:1621. doi:10.2147/IJN.S12440328280330
  • Vandebriel RJ, De Jong WH. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl. 2012;5:61. doi:10.2147/NSA24198497
  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol. 2014;37(3):336–347. doi:10.3109/01480545.2013.86613424344737
  • Zahra J, Iqbal S, Zahra K, et al. Effect of variable doses of zinc oxide nanoparticles on male albino mice behavior. Neurochem Res. 2017;42(2):439–445. doi:10.1007/s11064-016-2090-y27933550
  • Attia H, Nounou H, Shalaby M. Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat‘s brain after oral exposure. Toxics. 2018;6:2. doi:10.3390/toxics6020029
  • Darbandi N, Momeni H. Effect of zinc oxide nanoparticles on memory retrieval, hippocampal CA1 pyramidal neurons and some serum oxidative stress factors in male wistar rats. URMIA MED J. 2018;29(6):450–463.
  • Tian L, Lin B, Wu L, et al. Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep. 2015;5:16117. doi:10.1038/srep1611726527454
  • Zhao J, Xu L, Zhang T, Ren G, Yang Z. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology. 2009;30(2):220–230. doi:10.1016/j.neuro.2008.12.00519146874
  • Hsiao I-L, Huang Y-J. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. Chem Res Toxicol. 2011;24(3):303–313. doi:10.1021/tx100189221341804
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi:10.1016/j.micpath.2017.11.01329146498
  • Saratale RG, Karuppusamy I, Saratale GD, et al. A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B. 2018. doi:10.1016/j.colsurfb.2018.05.045
  • Kalpana V, Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl. 2018;2018:3569758. doi: 10:1155/2018/3569758
  • Kim C-S, Nguyen H-D, Ignacio RM, et al. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int J Nanomedicine. 2014;9(Suppl 2):195.25565837
  • Tarrasón G, Carcasona C, Eichhorn P, et al. Characterization of the mouse model of chloroquine-induced pruritus using an automated recording system. Paper presented at: experimental Dermatology 2015; Dublin, Ireland. doi:10.1111/exd.12861
  • Aghahowa S, Obianwu H, Isah A, Arhewoh I. Chloroquine-induced pruritus. Indian J Pharm Sci. 2010;72(3):283. doi:10.4103/0250-474X.7047121188034
  • Wilson SR, Gerhold KA, Bifolck-Fisher A, et al. TRPA1 is required for histamine-independent, Mas-related G protein–coupled receptor–mediated itch. Nat Neurosci. 2011;14(5):595. doi:10.1038/nn.278921460831
  • Bussaratid V, Walsh DS, Wilairatana P, Krudsood S, Silachamroon U, Looareesuwan S. Frequency of pruritus in Plasmodium vivax malaria patients treated with chloroquine in Thailand. Trop Doct. 2000;30(4):211–214. doi:10.1177/00494755000300041011075653
  • Haddadi A-S, Foroutan A, Ostadhadi S, et al. Peripheral NMDA receptor/NO system blockage inhibits itch responses induced by chloroquine in mice. Acta Derm Venereol. 2017;97(5):571–577. doi:10.2340/00015555-261728119997
  • Ru F, Sun H, Jurcakova D, et al. Mechanisms of pruritogen-induced activation of itch nerves in isolated mouse skin. J Physiol. 2017;595(11):3651–3666. doi:10.1113/JP27379528217875
  • Hollands C. The Animals (scientific procedures) Act 1986. Lancet (London, England). 1986;2(8497):32.
  • Varghese E, George M. Green synthesis of zinc oxide nanoparticles. Int J Adv Res Sci Eng. 2015;4(1):307–314.
  • Elliott P, G’Sell M, Snyder LM, Ross SE, Ventura V. Automated acoustic detection of mouse scratching. PLoS One. 2017;12(7):e0179662. doi:10.1016/j.pain.2006.03.02328678797
  • Zhao N, Gu M, Yang W, et al. Increased ZAP70 is involved in dry skin pruritus in aged mice. Biomed Res Int. 2016;2016:6029538. doi:10.1155/2016/6029638
  • Green AD, Young KK, Lehto SG, Smith SB, Mogil JS. Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain. 2006;124(1–2):50–58. doi:10.1016/j.pain.2006.03.02316697529
  • Gellért L, Varga D. Locomotion activity measurement in an open field for mice. Bio-protocol. 2016;6(13):e1857. doi:19.201769/BioProtoc.1857. Front Behav Neurosci. 2015.
  • Elmorsi TM, Elsayed MH, Bakr MF. Enhancing the removal of methylene blue by modified ZnO nanoparticles: kinetics and equilibrium studies. Can J Chem. 2017;95(5):590–600. doi:10.1139/cjc-2016-0456
  • Gopal VV, Kamila S. Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. App Nanosci. 2017;7(3–4):75–82. doi:10.1007/s13204-017-0553-3
  • Khan W, Khan Z, Saad A, Shervani S, Saleem A, Naqvi A Synthesis and characterization of Al doped ZnO nanoparticles. Paper presented at: International Journal of Modern Physics: Proceedings of the International Cnference on Ceramics;2013; Bikanaer, India. doi:10.1142/S2010194513010775
  • Dinesh V, Biji P, Ashok A, et al. Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@ Ag core–shell nanorods. RSC Adv. 2014;4(103):58930–58940. doi:10.1039/C4RA09405K
  • Cullity BD. Elements of X-Ray Diffraction. USA: Addison-Wesley Publishing Company, Inc.; 2001.
  • Mohan AC, Renjanadevi B. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technol. 2016;24:761–766. doi:10.1016/j.protcy.2016.05.078
  • Krishna Reddy G, Jagannatha Reddy A, Hari Krishna R, Nagabhushana B, Gopal GR. Luminescence and spectroscopic investigations on Gd3 + doped ZnO nanophosphor. J Asian Ceram Soc. 2017;5(3):350–356. doi:10.1016/j.jascer.2017.06.008
  • Barry DM, Yu Y-Q, Hao Y, Liu X-T, Chen Z-F. Response to comment on “molecular and neural basis of contagious itch behavior in mice”. Science. 2017;357(6347):eaan5000. doi:10.1126/science.aan500028706014
  • Ru F, Sun H, Jurcakova D, et al. Mechanisms of pruritogen‐induced activation of itch nerves in isolated mouse skin. J Physiol. 2017;595(11):3651–3666. doi:10.1113/JP27379528217875
  • Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018;38:3.
  • Sultana N, Najam R. Anxiolytic activity of aloe vera (L.) burm. F tested in rodents. Pak J Pharmacol. 2012;29(1):7–15.
  • Salehi B, Biazar E, Jahromi MH, Romani HA. Antidepressant effects of aloe vera hydroalcoholic extract. J Paramed Sci. 2011;2:3.
  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, LewisOscar F, Pugazhendhi A. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B. 2019;192:74–82. doi:10.1016/j.jphotobiol.2018.12.02530685586
  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B. 2019;190:86–97. doi:10.1016/j.jphotobiol.2018.11.01430504053