221
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Targeted delivery of polypeptide nanoparticle for treatment of traumatic brain injury

, , , , , & show all
Pages 4059-4069 | Published online: 31 May 2019

References

  • Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048. doi:10.1016/S1474-4422(17)30371-X29122524
  • Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–1201. doi:10.1016/j.bbi.2012.06.00822728326
  • Haberny KA, Paule MG, Scallet AC, et al. Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol Sci. 2002;68(1):9–17. doi:10.1093/toxsci/68.1.912075105
  • Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014;82(2):279–293. doi:10.1016/j.neuron.2014.03.03024742457
  • Cui H, Hayashi A, Sun HS, et al. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci. 2007;27(37):9901–9915. doi:10.1523/JNEUROSCI.1464-07.200717855605
  • Aarts M, Liu Y, Liu L, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–850. doi:10.1126/science.107287312399596
  • Cook DJ, Teves L, Tymianski M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci Transl Med. 2012;4(154):154ra133. doi:10.1126/scitranslmed.3003824
  • Hill MD, Martin RH, Mikulis D, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11(11):942–950. doi:10.1016/S1474-4422(12)70225-923051991
  • Papadopoulou LC, Tsiftsoglou AS. The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals. 2013;6(1):32–53. doi:10.3390/ph601003224275786
  • Yu X, Gou X, Wu P, et al. Activatable protein nanoparticles for targeted delivery of therapeutic peptides. Adv Mater. 2018;30(7). doi:10.1002/adma.201803888
  • Mann AP, Scodeller P, Hussain S, et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. 2016;7:11980. doi:10.1038/ncomms1198027351915
  • Czupalla CJ, Liebner S, Devraj K. In vitro models of the bloodвАУBrain barrier In: Milner R, editor. Cerebral Angiogenesis: Methods and Protocols. New York: Springer New York; 2014:415–437.
  • Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013;1078:9–21. doi:10.1007/978-1-62703-640-5_223975817
  • Zheng Z, Chen P, Li G, et al. Mechanistic study of CBT-Cys click reaction and its application for identifying bioactive N-terminal cysteine peptides in amniotic fluid. Chem Sci. 2017;8(1):214–222. doi:10.1039/c6sc01461e28451168
  • Hunsberger JG, Newton SS, Bennett AH, et al. Antidepressant actions of the exercise-regulated gene VGF. Nat Med. 2007;13(12):1476–1482. doi:10.1038/nm166918059283
  • Lee AS, Duman RS, Pittenger C. A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proc Natl Acad Sci U S A. 2008;105(44):17163–17168. doi:10.1073/pnas.080774910518955704
  • Fasano S, Pittenger C, Brambilla R. Inhibition of CREB activity in the dorsal portion of the striatum potentiates behavioral responses to drugs of abuse. Front Behav Neurosci. 2009;3:29. doi:10.3389/neuro.08.048.200919826621
  • Itsekson-Hayosh Z, Shavit-Stein E, Katzav A, et al. Minimal traumatic brain injury in mice: protease-activated receptor 1 and thrombin-related changes. J Neurotrauma. 2016;33(20):1848–1854. doi:10.1089/neu.2015.414626537880
  • Bharadwaj VN, Nguyen DT, Kodibagkar VD, Stabenfeldt SE. Nanoparticle-based therapeutics for brain injury. Adv Healthc Mater. 2018;7. doi:10.1002/adhm.201700668.
  • Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2(4):492–516. doi:10.1007/s12975-011-0125-x22299022
  • Chatard M, Puech C, Perek N, Roche F. Hydralazine is a suitable mimetic agent of hypoxia to study the impact of hypoxic stress on in vitro blood-brain barrier model. Cell Physiol Biochem. 2017;42(4):1592–1602. doi:10.1159/00047939928738383
  • Kaplan GB, Leite-Morris KA, Wang L, et al. Pathophysiological bases of comorbidity: traumatic brain injury and post-traumatic stress disorder. J Neurotrauma. 2018;35(2):210–225. doi:10.1089/neu.2016.495329017388