189
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Novel nanosized AS1411–chitosan–BODIPY conjugate for molecular fluorescent imaging

&
Pages 3543-3555 | Published online: 15 May 2019

References

  • Islami F, Miller KD, Siegel RL, Fedewa SA, Ward EM, Jemal A. Disparities in liver cancer occurrence in the United States by race/ethnicity and state. CA Cancer J Clin. 2017;67(4):273–289. doi:10.3322/caac.2140228586094
  • McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO press, 2015. Adv Nutr. 2016;7(2):418–419. doi:10.3945/an.116.01221126980827
  • Etemadi A, Sadjadi A, Semnani S, Nouraie M, Khademi H, Bahadori M. Cancer Registry in Iran: A Brief Overview. Vol. 112008.
  • Mousavi SM, Montazeri A, Mohagheghi MA, et al. Breast cancer in Iran: an epidemiological review. Breast J. 2007;13(4):383–391. doi:10.1111/j.1524-4741.2007.00446.x17593043
  • Choi KS, Jun JK, Suh M, et al. Effect of endoscopy screening on stage at gastric cancer diagnosis: results of the national cancer screening programme in Korea. Br J Cancer. 2015;112(3):608–612. doi:10.1038/bjc.2014.60825490528
  • Smith RA, Manassaram-Baptiste D, Brooks D, et al. Cancer screening in the United States, 2015: a review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin. 2015;65(1):30–54. doi:10.3322/caac.2126125581023
  • Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–123. doi:10.1373/clinchem.2014.22267925388429
  • Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1287–1297. doi:10.1056/NEJMoa131119424645800
  • Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev. 2019;48(1):38–71. doi:10.1039/c8cs00001h30387803
  • Watanabe T, Hirano K, Takahashi A, et al. Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull. 2010;33(5):796–803. doi:10.1248/bpb.33.79620460757
  • Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 2010;70(21):8617–8629. doi:10.1158/0008-5472.CAN-10-092020861190
  • Wu J, Song C, Jiang C, Shen X, Qiao Q, Hu Y. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol Pharm. 2013;10(10):3555–3563. doi:10.1021/mp300686g23679916
  • Ai J, Xu Y, Lou B, Li D, Wang E. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Talanta. 2014;118:54–60. doi:10.1016/j.talanta.2013.09.06224274270
  • Rosenberg JE, Bambury RM, Van Allen EM, et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs. 2014;32(1):178–187. doi:10.1007/s10637-013-0045-624242861
  • Park S-M, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater. 2017;2:17014 05/03/online. doi:10.1038/natrevmats.2017.1429876137
  • Mortazavi Y, Ghoreishi SM. Synthesis of mesoporous silica and modified as a drug delivery system of ibuprofen. J Nanostruct. 2016;6(1):86–89.
  • Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integrative Biology. 2014;6(1):9–26. doi:10.1039/c3ib40165k24104563
  • Miao Q, Xie C, Zhen X, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol. 2017;35:1102 10/16/online.29035373
  • Mortazavi-Derazkola S, Naimi-Jamal MR, Ghoreishi SM. Synthesis, characterization, and atenolol delivery application of functionalized mesoporous hydroxyapatite nanoparticles prepared by microwave-assisted co-precipitation method. Curr Drug Deliv. 2016;13(7):1123–1129.26996370
  • Kamat V, Bodas D, Paknikar K. Chitosan nanoparticles synthesis caught in action using microdroplet reactions. Sci Rep. 2016;6:22260 02/29/online. doi:10.1038/srep2226026924801
  • Mohammed MA, Syeda J, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. doi:10.3390/pharmaceutics9040053
  • Bilensoy E. Cationic nanoparticles for cancer therapy. Expert Opin Drug Deliv. 2010;7(7):795–809. doi:10.1517/17425247.2010.48598320446858
  • Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let‘s meet the challenge. Int J Pharm. 2010;394(1–2):122–142. doi:10.1016/j.ijpharm.2010.04.02720433913
  • Imamura T, Saitou T, Kawakami R. In vivo optical imaging of cancer cell function and tumor microenvironment. Cancer Sci. 2018;109(4):912–918. doi:10.1111/cas.1354429465804
  • Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med principles practice. 2011;20(5):397–415. doi:10.1159/000327655
  • Ghoreishi SM, Khalaj A, Sabzevari O, et al. Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: in vitro and in vivo evaluations. Int J Nanomedicine. 2018;13:4671–4683. doi:10.2147/IJN.S15742630154653
  • Mohammadzadeh P, Cohan RA, Ghoreishi SM, Bitarafan-Rajabi A, Ardestani MS. AS1411 aptamer-anionic linear globular dendrimer G2-Iohexol selective nano-theranostics. Sci Rep. 2017;7(1):11832. doi:10.1038/s41598-017-12150-828928437
  • Barzegar Behrooz A, Nabavizadeh F, Adiban J, et al. Smart bomb AS1411 aptamer‐functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol. 2017;44(1):41–51. doi:10.1111/1440-1681.1267027626786
  • Azhdarzadeh M, Atyabi F, Saei AA, et al. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B. 2016;143:224–232. doi:10.1016/j.colsurfb.2016.02.058
  • Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 2008;68(7):2358–2365. doi:10.1158/0008-5472.CAN-07-572318381443
  • Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther. 2006;5(12):2957–2962. doi:10.1158/1535-7163.MCT-06-017217172400
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discovery. 2010;9(7):537. doi:10.1038/nrd314120592747
  • Barbas AS, Mi J, Clary BM, White RR. Aptamer applications for targeted cancer therapy. Future Oncol. 2010;6(7):1117–1126. doi:10.2217/fon.10.6720624124
  • Fan X, Guo Y, Wang L, Xiong X, Zhu L, Fang K. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles. Int J Nanomedicine. 2016;11:3939–3950. doi:10.2147/IJN.S11295127574424
  • Sayari E, Dinarvand M, Amini M, et al. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm. 2014;473(1–2):304–315. doi:10.1016/j.ijpharm.2014.05.04124905777
  • Nabavinia MS, Gholoobi A, Charbgoo F, Nabavinia M, Ramezani M, Abnous K. Anti-MUC1 aptamer: a potential opportunity for cancer treatment. Med Res Rev. 2017;37(6):1518–1539. doi:10.1002/med.2146228759115
  • Cerchia L, de Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 2010;28(10):517–525. doi:10.1016/j.tibtech.2010.07.00520719399
  • Choi D, Jeon S, You DG, et al. Iodinated echogenic glycol chitosan nanoparticles for X-ray CT/US dual imaging of tumor. Nanotheranostics. 2018;2(2):117–127. doi:10.7150/ntno.1864329577016
  • Kaur S, Manhas P, Swami A, et al. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chem Eng J. 2018;346:630–639. doi:10.1016/j.cej.2018.03.176