107
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Mixed micelles loaded with the 5-benzylidenethiazolidine-2,4-dione derivative SKLB023 for efficient treatment of non-alcoholic steatohepatitis

, , , , , , , & show all
Pages 3943-3953 | Published online: 28 May 2019

References

  • Younossi ZM. Non-alcoholic fatty liver disease-a global public health perspective. J Hepatol. 2019;70(3):531–544. doi:10.1002/hep.30251
  • Byass P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 2014;12:159. doi:10.1186/s12916-014-0141-225286285
  • Younossi Z, Tacke F, Arrese M, et al. Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology. 2018. doi:10.1002/hep.30251
  • Takahashi Y, Sugimoto K, Inui H, Fukusato T. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2015;21(13):3777–3785. doi:10.3748/wjg.v21.i10.293725852263
  • Noureddin M, Zhang A, Loomba R. Promising therapies for treatment of nonalcoholic steatohepatitis. Expert Opin Emerg Drugs. 2016;21(3):343–357. doi:10.1080/14728214.2016.122053327501374
  • Milic S, Mikolasevic I, Krznaric-Zrnic I, et al. Nonalcoholic steatohepatitis: emerging targeted therapies to optimize treatment options. Drug Des Devel Ther. 2015;9:4835–4845. doi:10.2147/DDDT.S64877
  • Aram G, Potter JJ, Liu X, Torbenson MS, Mezey E. Lack of inducible nitric oxide synthase leads to increased hepatic apoptosis and decreased fibrosis in mice after chronic carbon tetrachloride administration. Hepatology (Baltimore, Md. 2008;47(6):2051–2058. doi:10.1002/hep.22149
  • Iwakiri Y. Nitric oxide in liver fibrosis: the role of inducible nitric oxide synthase. Clin Mol Hepatol. 2015;21(4):319–325. doi:10.3350/cmh.2015.21.4.31926770919
  • Anavi S, Eisenberg-Bord M, Hahn-Obercyger M, Genin O, Pines M, Tirosh O. The role of iNOS in cholesterol-induced liver fibrosis. Lab Invest. 2015;95(8):914–924. doi:10.1038/labinvest.2015.6726097999
  • Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: from past to present. Eur J Med Chem. 2017;126:879–893. doi:10.1016/j.ejmech.2016.12.02027988463
  • Tacelli M, Celsa C, Magro B, et al. Antidiabetic drugs in NAFLD: the accomplishment of two goals at once?. Pharmaceuticals (Basel). 2018;11(4):121.
  • Ye Y, Lin Y, Manickavasagam S, Perez-Polo JR, Tieu BC, Birnbaum Y. Pioglitazone protects the myocardium against ischemia-reperfusion injury in eNOS and iNOS knockout mice. Am J Physiol Heart Circ Physiol. 2008;295(6):H2436–H2446. doi:10.1152/ajpheart.00017.200818931027
  • Youssef J, Badr MZ. PPARs: history and advances. Methods Mol Biol. 2013;952:1–6.23100221
  • Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. JAMA Intern Med. 2017;177(5):633–640. doi:10.1001/jamainternmed.2016.960728241279
  • Ma L, Xie C, Ma Y, et al. Synthesis and biological evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives for the treatment of inflammatory diseases. J Med Chem. 2011;54(7):2060–2068. doi:10.1021/jm101153421381754
  • Xie C, Ma L, Liu J, et al. SKLB023 blocks joint inflammation and cartilage destruction in arthritis models via suppression of nuclear factor-kappa B activation in macrophage. PLoS One. 2013;8(2):e56349. doi:10.1371/journal.pone.005634923431370
  • Feng Y, Xu J, Guo F, et al. SKLB023 hinders renal interstitial fibrosis in obstructive nephropathy by interfering TGF-β1/Smad3 signaling. RSC Adv. 2018;8(11):5891–5896. doi:10.1039/C8RA00018B
  • Zhang J, Li Y, Liu Q, et al. SKLB023 as an iNOS inhibitor alleviated liver fibrosis by inhibiting the TGF-beta/Smad signaling pathway. RSC Adv. 2018;8(54):30919–30924. doi:10.1039/C8RA04955F
  • Duan RL, Sun X, Liu J, Gong T, Zhang ZR. Mixed micelles loaded with silybin-polyene phosphatidylcholine complex improve drug solubility. Acta Pharmacol Sin. 2011;32(1):108–115. doi:10.1038/aps.2010.20921170082
  • Hammad MA, Muller BW. Increasing drug solubility by means of bile salt-phosphatidylcholine-based mixed micelles. Eur J Pharm Biopharm. 1998;46(3):361–367. doi:10.1016/S0939-6411(98)00037-X9885310
  • Hammad MA, Muller BW. Solubility and stability of tetrazepam in mixed micelles. Eur J Pharm Sci. 1998;7(1):49–55. doi:10.1016/S0928-0987(98)00006-29845777
  • Teelmann K, Schlappi B, Schupbach M, Kistler A. Preclinical safety evaluation of intravenously administered mixed micelles. Arzneimittel-Forschung. 1984;34(11):1517–1523.6543126
  • Song X, Jiang Y, Ren C, et al. Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study. Int J Nanomedicine. 2012;7:3689–3699. doi:10.2147/IJN.S3063122888228
  • Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42. doi:10.1016/j.addr.2017.05.00728506744
  • Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411. doi:10.1038/nrgastro.2017.3828487545
  • Zamin I Jr., Mattos AA, Mattos AZ, Migon E, Soares E, Perry ML. Model of experimental nonalcoholic steatohepatitis from use of methionine and choline deficient diet. Arq Gastroenterol. 2009;46(1):69–74. doi:10.1590/S0004-2803200900010001719466313
  • He J, Hu B, Shi X, et al. Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3. Mol Cell Biol. 2013;33(10):2047–2055. doi:10.1128/MCB.00646-1223508103
  • Uto H, Nakanishi C, Ido A, et al. The peroxisome proliferator-activated receptor-gamma agonist, pioglitazone, inhibits fat accumulation and fibrosis in the livers of rats fed a choline-deficient, l-amino acid-defined diet. Hepatol Res. 2005;32(4):235–242.16085455
  • Serfaty L. Pioglitazone: the beginning of a new era for NASH? J Hepatol. 2007;47(1):160–162. doi:10.1016/j.jhep.2007.03.00217467111
  • Kalavalapalli S, Bril F, Koelmel JP, et al. Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab. 2018;315(2):E163–e173. doi:10.1152/ajpendo.00023.201829634314
  • Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81. doi:10.1016/j.molmed.2007.12.00318218340
  • Satapathy SK, Sanyal AJ. Novel treatment modalities for nonalcoholic steatohepatitis. Trends Endocrinol Metab. 2010;21(11):668–675. doi:10.1016/j.tem.2010.08.00320880717
  • Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017;66(1):180–190. doi:10.1136/gutjnl-2016-31243127646933
  • Guo Q, Cai J, Li P, et al. Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability. Drug Des Devel Ther. 2016;10:3789–3798. doi:10.2147/DDDT.S119918
  • Dongowski G, Fritzsch B, Giessler J, Hartl A, Kuhlmann O, Neubert RH. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits. Eur J Pharm Biopharm. 2005;60(1):147–151. doi:10.1016/j.ejpb.2005.01.00315848066
  • Jiménez Calvente C, Sehgal A, Popov Y, et al. Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid-like nanoparticles resolves liver fibrosis. Hepatology (Baltimore, Md. 2015;62(4):1285–1297. doi:10.1002/hep.27936
  • Zhang S, Wu J, Wang H, et al. Liposomal oxymatrine in hepatic fibrosis treatment: formulation, in vitro and in vivo assessment. AAPS PharmSciTech. 2014;15(3):620–629. doi:10.1208/s12249-014-0086-y24515270
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi:10.1038/nnano.2007.38718654426