185
Views
18
CrossRef citations to date
0
Altmetric
Review

Stimulus-responsive vesicular polymer nano-integrators for drug and gene delivery

, , , &
Pages 5415-5434 | Published online: 18 Jul 2019

References

  • Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297:967–973. doi:10.1126/science.107497212169723
  • Discher BM, Won YY, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymes. Science. 1999;284(5417):1143–1146.10325219
  • Yan, L., Higbee E, Tsourkas A, Cheng, Z. A simple method for the synthesis of porous polymeric vesicles and their application as MR contrast agents. J Mater Chem B. 2015;3(48):9277–9284. doi:10.1039/C5TB02067K26693022
  • P P G, Frail PR, Susumu K, et al. Near-infrared-emissive polymersomes self-assembled soft matter for in vivo optical imaging. Pans. 2005;102:2922–2927. doi:10.1073/pnas.0409394102
  • Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release. 2012;161(2):473–483. doi:10.1016/j.jconrel.2011.10.00522020381
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–160. doi:10.1038/nrd163215688077
  • Rapoport N. Physical stimulus-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32(8–9):962–990. doi:10.1016/j.progpolymsci.2007.05.009
  • Liu M,GL, Chen L, Chen L, et al. Supramolecular core-shell nanosilica@liposome nanocapsules for drug delivery. Langmuir. 2012;28(29):10725–10732. doi:10.1021/la302164522746205
  • Antunes FE, Marques EF, Miguel MG, Lindman B. Polymer-vesicle association. Adv Colloid Interface Sci. 2009;147–148:18–35. doi:10.1016/j.cis.2008.10.001
  • Horne ADBARW. Negative staining of Phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1963;8:9.
  • Antonietti M, Vesicles FS. Liposomes: a self-assembly principle beyond lipids. Adv Mater. 2003;15(16):1323–1333. doi:10.1002/adma.200300010
  • Meng F,ZZ, Feijen J. Stimulus-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2008;10:197–209. doi:10.1021/bm801127d
  • Du J, O’Reilly RK. Advances and challenges in smart and functional polymer vesicles. Soft Matter. 2009;5(19):3544–3561. doi:10.1039/b905635a
  • Li M-H, Keller P. Stimulus-responsive polymer vesicles. Soft Matter. 2009;5(5):927–937. doi:10.1039/b815725a
  • Kim KT, Meeuwissen SA, Nolte RJM, van Hest JCM. Smart nanocontainers and nanoreactors. Nanoscale. 2010;2(6):844–858. doi:10.1039/b9nr00409b20648280
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509–1528. doi:10.2217/nnm.13.11823914966
  • Anja Rank SH, Hauschild S, Förster S, Schubert R. Preparation of monodisperse block copolymer vesicles via a thermotropic cylinder-vesicle transition. Langmuir. 2009;25:1337–1344. doi:10.1021/la802709v19125559
  • Eisenberg DEDAA. Polymer vesicles. Science. 2002;297:967–973. doi:10.1126/science.107497212169723
  • Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–2561. doi:10.1039/c2cs15327k22334259
  • Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumours. Int J Hyperthermia. 1995;11(2):211–216. doi:10.3109/026567395090224577790735
  • Chen W, Meng F, Cheng R, Zhong Z. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release. 2010;142(1):40–46. doi:10.1016/j.jconrel.2009.09.02319804803
  • Sun L, Du J. Revisiting the time for removing the unloaded drug by dialysis method based on a biocompatible and biodegradable polymer vesicle. Polymer. 2012;53(10):2068–2073. doi:10.1016/j.polymer.2012.03.016
  • Zhu L, Zhao L, Qu X, Yang Z. pH-sensitive polymeric vesicles from coassembly of amphiphilic cholate grafted poly(L-lysine) and acid-cleavable polymer-drug conjugate. Langmuir. 2012;28(33):11988–11996. doi:10.1021/la301576722845809
  • Qian C, Wang Y, Chen Y, et al. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles. Biomaterials. 2013;34(26):6175–6184. doi:10.1016/j.biomaterials.2013.04.05623721794
  • Xiao H., He J,Li X, et al. Polymeric nanovesicles as simultaneous delivery platforms with doxorubicin conjugation and elacridar encapsulation for enhanced treatment of multidrug-resistant breast cancer. J Mater Chem B. 2018;6(45):7521–7529. doi:10.1039/C8TB01829D
  • Gaitzsch J., Appelhans D, Gräfe D, Schwille P, Voit B. Photo-crosslinked and pH sensitive polymersomes for triggering the loading and release of cargo. Chem Commun (Camb). 2011;47(12):3466–3468. doi:10.1039/c0cc05355d21301743
  • Mane SR, Rao NV, Chaterjee K, et al. Amphiphilic homopolymer vesicles as unique nano-carriers for cancer therapy. Macromolecules. 2012;45(19):8037–8042. doi:10.1021/ma301644m
  • Kim MS, Lee DS. Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chem Commun (Camb). 2010;46(25):4481–4483. doi:10.1039/c001500h20461280
  • Kang SW, Li Y, Park JH, Lee DS. pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly(β-amino ester) for anti-cancer drug delivery. Polymer. 2013;54(1):102–110. doi:10.1016/j.polymer.2012.10.055
  • Jeong IK, Gao GH, Li Y, Kang SW, Lee DS. A biodegradable polymersome with pH-tuning on-off membrane based on poly(beta-amino ester) for drug delivery. Macromol Biosci. 2013;13(7):946–953. doi:10.1002/mabi.20120046823696500
  • Johnson RP, Uthaman S, John JV, et al. Poly(PEGA)-b-poly(L-lysine)-b-poly(L-histidine) hybrid vesicles for tumoral pH-triggered intracellular delivery of doxorubicin hydrochloride. ACS Appl Mater Interfaces. 2015;7(39):21770–21779. doi:10.1021/acsami.5b0533826375278
  • Changez M, Kang N-G, Lee CH, Lee J-S. Reversible and pH-sensitive vesicles from amphiphilic homopolymer poly(2-(4-vinylphenyl)pyridine). Small. 2010;6(1):63–68. doi:10.1002/smll.20090167019924744
  • Pegoraro C, Cecchin D, Gracia LS, et al. Enhanced drug delivery to melanoma cells using PMPC-PDPA polymersomes. Cancer Lett. 2013;334(2):328–337. doi:10.1016/j.canlet.2013.02.00723402813
  • Fu J, Qiu L. Optimizing hydrophobic groups in amphiphiles to induce gold nanoparticle complex vesicles for stability regulation. Langmuir. 2017;33(43):12291–12299. doi:10.1021/acs.langmuir.7b0274528974088
  • Shen J, Wang Z, Sun D, et al. pH-responsive nanovesicles with enhanced emission co-assembled by Ag(I) nanoclusters and polyethyleneimine as a superior sensor for Al(3). ACS Appl Mater Interfaces. 2018;10(4):3955–3963. doi:10.1021/acsami.7b1631629319291
  • Liang L, Qiu L, Fu J. Design of pH-sensitive nanovesicles via cholesterol analogue incorporation for improving in vivo delivery of chemotherapeutics. ACS Appl Mater Interfaces. 2018;10(6):5213–5226. doi:10.1021/acsami.7b1689129338184
  • Du J, Fan L, Liu Q. pH-Sensitive block copolymer vesicles with variable trigger points for drug delivery. Macromolecules. 2012;45(20):8275–8283. doi:10.1021/ma3015728
  • Pluen A, Boucher Y, Ramanujan S, et al. Role of tumor–host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Pans. 2001;98::4628–4633. doi:10.1073/pnas.081626898
  • Wang Y, Chou T, Sukhishvili SA. Spontaneous, one-pot assembly of pH-responsive hydrogen-bonded polymer capsules. ACS Macro Lett. 2015;5(1):35–39. doi:10.1021/acsmacrolett.5b00716
  • Genc R, Murphy D, Fragoso A, Ortiz M, O’Sullivan CK. Signal-enhancing thermosensitive liposomes for highly sensitive immunosensor development. Anal Chem. 2011;83(2):563–570. doi:10.1021/ac102376521155541
  • Orsinger GV, Williams JD, Romanowski M. Intracellular light-induced release of signaling molecules from gold-coated liposomes. Proc SPIE. 2014;8955:89551G/1-89551G/7 (Colloidal Nanoparticles for Biomedical Applications IX).
  • Li J. Block Copolymers Consisting of Biobased Polyesters and Their Self-Assembly Nanostructures for Biomaterials Applications. American Chemical Society; Abstracts of Papers of the American Chemical Society. Vol 244. NW, Washington DC, USA: Amer Chemical Soc;2012.
  • Zhu J-L, Liu KL, Li J. Block copolymers consisting of biobased polyesters and their self-assembly nanostructures. Polym Prepr (Am Chem Soc , Div Polym Chem). 2012;53(2):330–331.
  • Hayashi H, Kono K, Takagishi T. Temperature-controlled release property of phospholipid vesicles bearing a thermo-sensitive polymer. Biochim Biophys Acta. 1996;1280(1):127–134.8634307
  • He, J., Tong X, Tremblay L, Zhao Y. Corona-cross-linked polymer vesicles displaying a large and reversible temperature-responsive volume transition. Macromolecules. 2009;42(19):7267–7270. doi:10.1021/ma901817k
  • Rank A, Hauschild S, FöRster S, Förster S, Schubert R. Preparation of monodisperse block copolymer vesicles via a thermotropic cylinder-vesicle transition. Langmuir. 2009;25:1337–1344. doi:10.1021/la802709v19125559
  • Bhargava P, Tu Y, Zheng JX, Xiong H, Quirk RP, Cheng SZD. Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution. J Am Chem Soc. 2007;129(5):1113–1121. doi:10.1021/ja065301917263392
  • Zhou Y, Yan D, Dong W, Tian Y. Temperature-responsive phase transition of polymer vesicles: real-time morphology observation and molecular mechanism. J Phyl Chem B. 2007;111(6):1262–1270. doi:10.1021/jp0673563
  • Larue I, Adam M, Pitsikalis M, Hadjichristidis N, Rubinstein M, Sheiko SS. Reversible morphological transitions of polystyrene-b-polyisoprene micelles. Macromolecules. 2014;39(1):309–314. doi:10.1021/ma051548z
  • Hocine S, Di C, Rager MN, et al. Polymersomes with PEG corona: structural changes and controlled release induced by temperature variation. Langmuir. 2013;29(5):1356–1369. doi:10.1021/la304199z23293844
  • Cao X, Chen Y, Chai W, et al. Thermoresponsive self-assembled nanovesicles based on amphiphilic triblock copolymers and their potential applications as smart drug release carriers. J Appl Polym Sci. 2015;132(4):41361–41372. doi:10.1002/app.41361
  • Achiha K, Ojima R, Kasuya Y, Fujimoto K, Kawaguchi H. Interactions between temperature-sensitive hydrogel microspheres and granulocytes. Polym Adv Technol. 1995;6(7):534–540. doi:10.1002/pat.1995.220060715
  • Kawaguchi H. Functions of monodisperse, thermosensitive hydrogel microspheres. Front Biomed Biotechnol. 1996;3:157–168. (Biomedical Functions and Biotechnology of Natural and Artificial Polymers).
  • Akimoto J, Nakayama M, Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J Controll Release. 2014;193:2–8. doi:10.1016/j.jconrel.2014.06.062
  • Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater. 2012;24(5):840–853. doi:10.1021/cm203156922707853
  • Adair JH, Parette MP, Altinoğlu EI, Kester M. Nanoparticulate alternatives for drug delivery. ACS Nano. 2010;4(9):4967–4970. doi:10.1021/nn102324e20873786
  • Lavasanifar A, Samuel J, Kwon GS. Poly (ethylene oxide)-block-poly (L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54(2):169–190.11897144
  • Xu H, Meng F, Zhong Z. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J Mater Chem. 2009;19(24):4183–4190. doi:10.1039/b901141b
  • Bixner O, Kurzhals S, Virk M, Reimhult E. Triggered release from thermoresponsive polymersomes with superparamagnetic membranes. Materials. 2016;9(1):29/1–29/14. doi:10.3390/ma9010029
  • Li A, Pazzi J, Xu M, Subramaniam AB. Cellulose abetted assembly and temporally decoupled loading of cargo into vesicles synthesized from functionally diverse lamellar phase forming amphiphiles. Biomacromolecules. 2018;19(3):849–859. doi:10.1021/acs.biomac.7b0164529465981
  • Kozlovskaya V, Liu F, Xue B, et al. Polyphenolic polymersomes of temperature-sensitive poly(N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) for anticancer therapy. Biomacromolecules. 2017;18(8):2552–2563. doi:10.1021/acs.biomac.7b0068728700211
  • Yan J-J, Wang X-Y, Wang M-Z, et al. Self-assembling nonconjugated poly(amide-imide) into thermoresponsive nanovesicles with unexpected red fluorescence for bioimaging. Biomacromolecules. 2019;20(3):1455–1463. doi:10.1021/acs.biomac.9b0005130764611
  • Balzani V, Bergamini G, Ceroni P. Light: a very peculiar reactant and product. Angew Chem Int Ed Engl. 2015;54(39):11320–11337. doi:10.1002/anie.20150232526333145
  • Cabane E, Malinova V, Menon S, Menon S, Palivan CG, Meier W. Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter. 2011;7(19):9167–9176. doi:10.1039/c1sm05880k
  • Photosensitizer, P.C.V.f.P.I.D.o.A. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J Am Chem Soc. 2014;136(1):157–163. doi:10.1021/ja406992w24283288
  • Blasco E, Schmidt Bernhard VKJ, Barner-Kowollik C, et al. A novel photoresponsive azobenzene-containing miktoarm star polymer: self-assembly and photoresponse properties. Macromolecules. 2014;47(11):3693–3700. doi:10.1021/ma500254p
  • Wang Y, Han P, Xu H, et al. Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir. 2010;26(2):709–715. doi:10.1021/la902384419627165
  • Wang X, Liu G, Hu J, Zhang G, Liu S. Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated “traceless” crosslinking. Angew Chem Int Ed Engl. 2014;53(12):3138–3142. doi:10.1002/anie.20131058924519898
  • Rodriguez AR, Kramer JR, Deming TJ. Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles. Biomacromolecules. 2013;14(10):3610–3614. doi:10.1021/bm400971p23980867
  • Bacinello D, Garanger E, Taton D, Taton D, Tam KC, Lecommandoux S. Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids. Biomacromolecules. 2014;15(5):1882–1888. doi:10.1021/bm500296n24670109
  • Inchanalkar S, Deshpande NU, Kasherwal V, Jayakannan M, Balasubramanian N. Polymer nanovesicle-mediated delivery of MLN8237 preferentially inhibits Aurora kinase a to target RalA and anchorage-independent growth in breast cancer cells. Mol Pharmaceutics. 2018;15(8):3046–3059. doi:10.1021/acs.molpharmaceut.8b00163
  • Wang X, Yan J-J, Wang L, et al. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem Mater. 2018;30(12):4073–4080. doi:10.1021/acs.chemmater.8b01173
  • Ren T,WW, Jia M, Jia M, Dong H, Li Y, Ou Z. Reduction-cleavable polymeric vesicles with efficient glutathione-mediated drug release behavior for reversing drug resistance. ACS Appl Mater Interfaces. 2013;5(21):10721–10730. doi:10.1021/am402860v24083448
  • Yan Q YJ, Cai Z, Cai Z, Xin Y, Kang Y, Yin Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc. 2010;132:9268–9270. doi:10.1021/ja102750220565093
  • Pangu GD, Davis KP, Bates FS, Hammer DA. Ultrasonically induced release from nanosized polymer vesicles. Macromol Biosci. 2010;10(5):546–554. doi:10.1002/mabi.20100008120491132
  • Jessop PG, Phan L, Carrier A, Robinson S, Dürr CJ, Harjani JR. A solvent having switchable hydrophilicity. Green Chem. 2010;12(5):809–814. doi:10.1039/b926885e
  • Ding Y, Chen S, Xu H, et al. Reversible dispersion of single-walled carbon nanotubes based on a CO2-responsive dispersant. Langmuir. 2010;26(22):16667–16671. doi:10.1021/la103519t20925332
  • Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL. Switchable surfactants. Science. 2006;313(5789):958–960. doi:10.1126/science.112814216917059
  • Yan Q, Zhou R, Fu C, Zhang H, Yin Y, Yuan J. CO2-responsive polymeric vesicles that breathe. Angew Chem Int Ed Engl. 2011;50(21):4923–4927. doi:10.1002/anie.20110070821538746
  • Yan Q, Wang J, Yin Y, Yuan J. Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction. Angew Chem Int Ed Engl. 2013;52(19):5070–5073. doi:10.1002/anie.20130039723495068
  • Zhou, Z., Chan A, Wang Z, et al. Synchronous chemoradiation nanovesicles by X-Ray Triggered Cascade of Drug Release. Angew Chem Int Ed. 2018;57(28):8463–8467. doi:10.1002/anie.201802351
  • Naik SS, Ray JG, Savin DA. Temperature- and pH-responsive self-assembly of poly(propylene oxide)-b-poly(lysine) block copolymers in aqueous solution. Langmuir. 2011;27(11):7231–7740. doi:10.1021/la200882f21563804
  • Chiang WH,HVT, Huang WC, Huang W-C, Huang Y-F, Chern C-S, Chiu H-C. Dual stimulus-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release. Langmuir. 2012;28(42):15056–15064. doi:10.1021/la302903v23036055
  • Savoji MT, Strandman S, Zhu XX. Switchable vesicles formed by diblock random copolymers with tunable pH- and thermo-responsiveness. Langmuir. 2013;29(23):6823–6832. doi:10.1021/la400962523659305
  • Mane SR, Rao N, Shunmugam R. Reversible pH- and lipid-sensitive vesicles from amphiphilic norbornene-derived thiobarbiturate homopolymers. ACS Macro Lett. 2012;1(4):482–488. doi:10.1021/mz2002092
  • Wei J,YZ, Lin L, Lin L, Gu J, Feng Z, Yu Y. Photo/pH dual-responsive behavior of azopyridine-containing copolymer vesicles. React Funct Polym. 2013;73(8):1009–1014. doi:10.1016/j.reactfunctpolym.2013.05.009
  • Iyisan B,KJ, Formanek P, Formanek P, Voit B, Appelhans D. Multifunctional and dual-responsive polymersomes as robust nanocontainers: design, formation by sequential post-conjugations, and pH-controlled drug release. Chem Mater. 2016;28(5):1513–1525. doi:10.1021/acs.chemmater.5b05016
  • Wang S,ZS, Liu J, Liu J, et al. pH- and reduction-responsive polymeric lipid vesicles for enhanced tumor cellular internalization and triggered drug release. ACS Appl Mater Interfaces. 2014;6(13):10706–10713. doi:10.1021/am502579e24941446
  • Pramod PS, Shah R, Jayakannan M. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Nanoscale. 2015;7(15):6636–6652. doi:10.1039/c5nr00799b25797322
  • Deshpande NU, Jayakannan M. Biotin-tagged polysaccharide vesicular nanocarriers for receptor-mediated anticancer drug delivery in cancer cells. Biomacromolecules. 2018;19:3575–3585. doi:10.1021/acs.biomac.8b00833
  • Pramod PS, Deshpande NU, Jayakannan M. Real-time drug release analysis of enzyme and pH responsive polysaccharide nanovesicles. J Phys Chem B. 2015;119(33):10511–10523. doi:10.1021/acs.jpcb.5b0579526237375
  • Liu B, Zhou H, Zhou S, et al. Synthesis and self-assembly of CO2–temperature Dual Stimulus-responsive Triblock Copolymers. Macromolecules. 2014;47(9):2938–2946. doi:10.1021/ma5001404
  • Zou H, Yuan W. CO2- and thermo-responsive vesicles: from expansion–contraction transformation to vesicles-micelles transition. Polym Chem. 2015;6(13):2457–2465. doi:10.1039/C5PY00024F
  • Wu Y, Liu S, Tao Y, et al. New strategy for controlled release of drugs. Potential pinpoint targeting with multiresponsive tetraaniline diblock polymer vesicles: site-directed burst release with voltage. ACS Appl Mater Interfaces. 2014;6(3):1470–1480. doi:10.1021/am404696u24450985
  • Liu G, Wang X, Hu J, Zhang G, Liu S. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J Am Chem Soc. 2014;136(20):7492–7497. doi:10.1021/ja503083224786176
  • Liu G, Zhou L, Guan Y, Su Y, Dong C-M. Multi-responsive polypeptidosome: characterization, morphology transformation, and triggered drug delivery. Macromol Rapid Commun. 2014;35(19):1673–1678. doi:10.1002/marc.20140034325170968
  • Kim Y, Tewari M, Pajerowski JD, et al. Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release. 2009;134(2):132–140. doi:10.1016/j.jconrel.2008.10.02019084037
  • Pangburn TO, Georgiou K, Bates FS, Kokkoli E. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir. 2012;28(35):12816–12830. doi:10.1021/la300874z22827285
  • Ding J, Xiao C, He C, et al. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology. 2011;22(49):494012. doi:10.1088/0957-4484/22/49/49401222101683
  • Ding J, Xiao C, Zhuang X, Zhuang X, He C, Chen X. Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Mater Lett. 2012;73:17–20. doi:10.1016/j.matlet.2011.12.092
  • Sun VZ, U-J C, Rodriguez AR, et al. Transfection of mammalian cells using block copolypeptide vesicles. Macromol Biosci. 2013;13(5):539–550. doi:10.1002/mabi.20120038323460310
  • Gallon E,MT, Matini T, Sasso L, et al. Triblock copolymer nanovesicles for pH-responsive targeted delivery and controlled release of siRNA to cancer cells. Biomacromolecules. 2015;16(7):1924–1937. doi:10.1021/acs.biomac.5b0028625988940
  • Wang M, Zhou C, Chen J, Xiao Y, Du J. Multifunctional biocompatible and biodegradable folic acid conjugated poly(epsilon-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjug Chem. 2015;26(4):725–734. doi:10.1021/acs.bioconjchem.5b0006125721382
  • Yang X, Grailer JJ, Rowland IJ, et al. Multifunctional stable and pH responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR IMAGING. ACS Nano. 2010;4:6805–6817. doi:10.1021/nn101670k20958084
  • Liu Q, Zhu H, Qin J, Dong H, Du J. Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery. Biomacromolecules. 2014;15(5):1586–1592. doi:10.1021/bm500438x24690007
  • Feng ST, Li H, Luo Y, et al. Molecular targeted magnetic resonance imaging of human colorectal carcinoma (LoVo) cells using novel superparamagnetic iron oxide- loaded nanovesicles: in vitro and in vivo studies. Curr Cancer Drug Targets. 2016;16(6):551–560.27262319
  • Chen G, Yang J, Lu G, et al. One stone kills three birds: novel boron-containing vesicles for potential BNCT, controlled drug release, and diagnostic imaging. Mol Pharm. 2014;11(10):3291–3299. doi:10.1021/mp400641u24521224
  • Yang X, Grailer JJ, Rowland IJ, et al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials. 2010;31(34):9065–9073. doi:10.1016/j.biomaterials.2010.08.03920828811
  • Chiang WH, W-C H, Chang CW, et al. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J Control Release. 2013;168(3):280–288. doi:10.1016/j.jconrel.2013.03.02923562635
  • Sun Q, Du C, Yu X, et al. A pH-sensitive polymeric nanovesicle based on biodegradable poly(ethylene glycol)-b-poly(2-(diisopropylamino)ethyl aspartate) as a MRI-visible drug delivery system. J Mater Chem. 2011;21(39):15316–15326. doi:10.1039/c1jm12404h
  • Ren T, Liu Q, Lu H, et al. Multifunctional polymer vesicles for ultrasensitive magnetic resonance imaging and drug delivery. J Mater Chem. 2012;22(24):12329–12338. doi:10.1039/c2jm31891a
  • Sanson C, Diou O, Thevenot J, et al. Doxorubicin loaded magnetic polymersomes. ACS Nano. 2011;5:1122–1140. doi:10.1021/nn102762f21218795
  • Li H, Wang P, Wang X, et al. Perfluorooctyl bromide traces self-assembled with polymeric nanovesicles for blood pool ultrasound imaging. Biomater Sci. 2016;4(6):979–988. doi:10.1039/c6bm00080k27121357
  • Hsu CY, Nieh MP, Lai PS. Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications. Chem Commun (Camb). 2012;48(75):9343–9345. doi:10.1039/c2cc33851c22810377