169
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity

, , , , &
Pages 6019-6033 | Published online: 01 Aug 2019

References

  • Reynolds JJ, Khundkar R, Boriani S, et al. Soft tissue and bone defect management in total sacrectomy for primary sacral tumors: a systematic review with expert recommendations. Spine. 2016;41(Suppl 20):S199–S204.27509193
  • Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224–247. doi:10.1016/j.bioactmat.2017.05.00729744432
  • Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018;6(2):90–99.29600260
  • Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337. doi:10.1111/eos.1236428833567
  • Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine. 2017;12:4937–4961. doi:10.2147/IJN.S12467128761338
  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–281. doi:10.1016/j.ijbiomac.2014.07.00825020082
  • Ren X, Sun Z, Ma X, et al. Alginate-mediated mineralization for ultra-fine hydroxyapatite hybrid nanoparticles. Langmuir. 2018. doi:10.1021/acs.langmuir.8b00151
  • Ma B, Han J, Zhang S, et al. Hydroxyapatite nanobelt/polylactic acid janus membrane with osteoinduction/barrier dual functions for precise bone defect repair. Acta Biomater. 2018;71:108–117. doi:10.1016/j.actbio.2018.02.03329524672
  • Didier P, Piotrowski B, Fischer M, Laheurte P. Mechanical stability of custom-made implants: numerical study of anatomical device and low elastic young’s modulus alloy. Mate Sci Eng C Mater Biol Appl. 2017;74:399–409. doi:10.1016/j.msec.2016.12.031
  • Martin V, Bettencourt A. Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties. Mate Sci Eng C Mater Biol Appl. 2018;82:363–371. doi:10.1016/j.msec.2017.04.038
  • Wang Y, Newman MR, Benoit DSW. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. Eur J Pharm Biopharm. 2018;127:223–236. doi:10.1016/j.ejpb.2018.02.02329471078
  • El Bialy I, Jiskoot W, Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34(6):1152–1170. doi:10.1007/s11095-017-2147-x28342056
  • Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int. 2018;29(3):535–544. doi:10.1007/s00198-017-4255-129110063
  • Indran IR, Liang RL, Min TE, Yong EL. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol Ther. 2016;162:188–205. doi:10.1016/j.pharmthera.2016.01.01526820757
  • Wang Q, Cao L, Liu Y, et al. Evaluation of synergistic osteogenesis between icariin and BMP2 through a micro/meso hierarchical porous delivery system. Int J Nanomedicine. 2017;12:7721–7735. doi:10.2147/IJN.S14105229089766
  • Song L, Zhao J, Zhang X, Li H, Zhou Y. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur J Pharmacol. 2013;714(1–3):15–22. doi:10.1016/j.ejphar.2013.05.03923764463
  • Li M, Gu Q, Chen M, Zhang C, Chen S, Zhao J. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering. Mate Sci Eng C. 2017;71:260–267. doi:10.1016/j.msec.2016.10.016
  • Zhao J, Ohba S, Komiyama Y, Shinkai M, Chung UI, Nagamune T. Icariin: a potential osteoinductive compound for bone tissue engineering. Tissue Eng Part A. 2010;16(1):233–243. doi:10.1089/ten.TEA.2009.016519698057
  • Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28(9):1664–1671. doi:10.1016/j.biomaterials.2006.11.02417196648
  • Balmayor ER, Geiger JP, Aneja MK, et al. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials. 2016;87:131–146. doi:10.1016/j.biomaterials.2016.02.01826923361
  • Xie Y, Sun W, Deng Z, Zhu X, Hu C, Cai L. MiR-302b suppresses osteosarcoma cell migration and invasion by targeting Runx2. Sci Rep. 2017;7(1):13388. doi:10.1038/s41598-017-13353-929042587
  • Zhou J, Lin H, Fang T, et al. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials. 2010;31(6):1171–1179. doi:10.1016/j.biomaterials.2009.10.04319880177
  • Raftery RM, Mencia Castano I, Chen G, et al. Translating the role of osteogenic-angiogenic coupling in bone formation: highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials. 2017;149:116–127. doi:10.1016/j.biomaterials.2017.09.03629024837
  • Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987;18(2):213–225.3550572
  • Lin HR, Yeh YJ. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater. 2004;71(1):52–65. doi:10.1002/jbm.b.3006515368228
  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56.24730250
  • van Griensven M. Preclinical testing of drug delivery systems to bone. Adv Drug Deliv Rev. 2015;94:151–164. doi:10.1016/j.addr.2015.07.00626212157
  • Li M, Zhang C, Zhong Y, Zhao J. A novel approach to utilize icariin as icariin-derived ECM on small intestinal submucosa scaffold for bone repair. Ann Biomed Eng. 2017;45(11):2673–2682. doi:10.1007/s10439-017-1900-y28812170
  • de Almeida AD, Leite FG, Chaud MV, et al. Safety and efficacy of hydroxyapatite scaffold in the prevention of jaw osteonecrosis in vivo. J Biomed Mater Res B Appl Biomater. 2018;106(5):1799–1808.28902456
  • Kolmas J, Pajor K, Pajchel L, et al. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors. Int J Nanomedicine. 2017;12:5633–5642. doi:10.2147/IJN.S14093528848343
  • Li D, Liu H, Zhao J, et al. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia- preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration. Bioact Mater. 2018;13(5):055002.
  • Choi S, Friedrichs J, Song YH, Werner C, Estroff LA, Fischbach C. Intrafibrillar, bone-mimetic collagen mineralization regulates breast cancer cell adhesion and migration. Biomaterials. 2019;198:95–106.29759731
  • Wu JZ, Liu PC, Liu R, Cai M. Icariin restores bone structure and strength in a rat model of chronic high-dose alcohol-induced osteopenia. Cell Physiol Biochem. 2018;46(4):1727–1736. doi:10.1159/00048924829698972
  • Zhai YK, Guo XY, Ge BF, et al. Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K-AKT-eNOS-NO-cGMP-PKG. Bone. 2014;66:189–198. doi:10.1016/j.bone.2014.06.01624956021
  • Qin S, Zhou W, Liu S, Chen P, Wu H. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. Int J Clin Exp Med. 2015;8(5):7125–7133.26221250
  • Liu Y, Huang L, Hao B, et al. Use of an osteoblast overload damage model to probe the effect of icariin on the proliferation, differentiation and mineralization of MC3T3-E1 cells through the Wnt/beta-catenin signalling pathway. Cell Physiol Biochem. 2017;41(4):1605–1615. doi:10.1159/00047089628355606
  • Zhao J, Ohba S, Shinkai M, Chung UI, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun. 2008;369(2):444–448. doi:10.1016/j.bbrc.2008.02.05418295595
  • Zhang X, Guo Y, Li DX, et al. The effect of loading icariin on biocompatibility and bioactivity of porous beta-TCP ceramic. J Mater Sci. 2011;22(2):371–379. doi:10.1007/s10856-010-4198-y
  • Lai Y, Cao H, Wang X, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials. 2018;153:1–13. doi:10.1016/j.biomaterials.2017.10.02529096397
  • Ciriza J, Saenz Del Burgo L, Gurruchaga H, et al. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv. 2018;25(1):1147–1160. doi:10.1080/10717544.2018.147496629781340