497
Views
63
CrossRef citations to date
0
Altmetric
Original Research

Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers

, , , , , , & show all
Pages 4413-4428 | Published online: 18 Jun 2019

References

  • World Health Organization (WHO). Online. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/. (Accessed 12, 2018).
  • American Cancer Society. Breast cancer facts & figures 2012–2014. Breast Cancer Facts Fig. 2013. doi:10.1007/s10549-012-2018-4.Mesothelin
  • Siegel R. Cáncer Statistics. Ca Cáncer J. 2017;67(1):7–30. doi:10.3322/caac.21387
  • Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539(1–2):104–111. doi:10.1016/j.ijpharm.2018.01.03429366941
  • Ruggiero C, Metter EJ, Cherubini A, et al. White blood cell count and mortality in the baltimore longitudinal study of aging. J Am Cardio. 2007;50(18):1810–1850. doi:10.1016/j.jacc.2007.01.076
  • Long M, Tao S, Vega D, et al. Nrf2-dependent suppression of azoxymethane/dextran sulfate sodium–induced colon carcinogenesis by the cinnamon-derived dietary factor cinnamaldehyde. Cancer Prev Res. 2015;8(5):444–454. doi:10.1158/1940-6207
  • He XY, Yuan YZ. Advances in pancreatic cancer research: moving towards early detection. World J Gastroenterol. 2014;20(32):11241–11248. doi:10.3748/wjg.v20.i32.1124125170208
  • Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–620. doi:10.1016/S0140-6736(10)62307-021620466
  • Masago K, Fukuhara A, Ito Y, et al. Infectious background of febrile advanced lung cancer patients who recieved chemotherapy. Oncol Lett. 2010;1(1):109–112. doi:10.3892/ol22966266
  • Cameron AC, Touyz RM, Lang NN. Vascular complications of cancer chemotherapy. Can J Cardiol. 2016;32(7):852–862. doi:10.1016/j.cjca.2015.12.02326968393
  • Aahlin EK, Olsen F, Uleberg B, Jacobsen BK, Lassen K. Major postoperative complications are associated with impaired long-term survival after gastro-esophageal and pancreatic cancer surgery: a complete national cohort study. BMC Surg. 2016;16(1):1–8. doi:10.1186/s12893-016-0149-y26729191
  • Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers : an overview of drug delivery against cancer. Int J Biol Macromol. 2019;130:727–736. doi:10.1016/j.ijbiomac.2019.02.06030771392
  • Oyebode O, Kandala N, Chilton PJ, Lilford RJ. Use of traditional medicine in middle-income countries : a WHO-SAGE study. Health Policy Plan 2016;31(8):984–991. doi:10.1093/heapol/czw022
  • Payyappallimana U. Role of traditional medicine in primary health care : an overview of role of traditional medicine in primary health care : an overview of perspectives and challenges. Yokohama Journal of Social Science. 2010;14(6):57–77.
  • Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med. 2014;5(12):1487–1499. Available from:: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336979/.25709784
  • Nune SK, Chanda N, Shukla R, et al. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem. 2009;19(19):2912–2920. doi:10.1039/B822015H20161162
  • Shukla R, Nune SK, Chanda N, et al. Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small. 2008;4(9):1425–1436. doi:10.1002/smll.20080052518642250
  • Xiang L, Xiao L, Wang Y, Li H, Huang Z, He X. Health benefits of wine: don’t expect resveratrol too much. Food Chem. 2014;156:258–263. doi:10.1016/j.foodchem.2014.01.00624629966
  • Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1(1):35. doi:10.1038/s41698-017-0038-628989978
  • Dong W, Zhou Y, Yang Z. Research progress of mechanism of action of resveratrol. Pharmacology Pharm. 2016;7:170–175. doi:10.4236/pp.2016.74022
  • Borriello A. Resveratrol in cancer prevention and treatment: focusing on molecular targets and mechanism of action. Proceedings. 2017;1(10):976. doi:10.3390/proceedings1100976
  • Anisimova NYU, Kiselevsky MV, Sosnov AV, Sadovnikov SV, Stankov IN, Gakh AA. A comparative study. Chem Cent J. 2011;5(1):88. doi:10.1186/1752-153X-5-8822185600
  • Gambini J, Inglés M, Olaso G, Abdelaziz KM, Vina J, Borras C. Properties of resveratrol : in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev. 2015. doi:10.1155/2015/837042
  • Allan KE, Lenehan CE, Ellis AV. UV light stability of -cyclodextrin/resveratrol hostguest complexes and isomer stability at varying pH. Aust J Chem. 2009;62(8):921–926. doi:10.1071/CH08506
  • Owen A, Moscatelli D, Lovell JF, Katti KV, Mazza M. The application of nanotechnology in medicine: treatment and diagnostics. Nanomedicine (Lond). 2014;9:1291–1294. doi:10.2217/nnm.14.9325204820
  • Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR. Laminin receptor specific therapeutic gold efficacy in treating prostate cancer. PNAS. 2012;1–6. doi:10.1073/pnas.1121174109
  • Mccormack DR, Bhattacharyya K, Kannan R, Katti K. Enhanced photoacoustic detection of melanoma cells using gold nanoparticles. Lasers Surg Med. 2011;338(March):333–338. doi:10.1002/lsm.21060
  • Chanda N, Kattumuri V, Shukla R, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA. 2010. doi:10.1073/pnas.1002143107
  • Chanda N, Kan P, Watkinson LD, et al. Radioactive gold nanoparticles in cancer therapy : therapeutic efficacy studies of GA- 198 AuNP nanoconstruct in prostate tumor – bearing mice. Nanomed Nanotechnol Biol Med. 2010;6(2):201–209. doi:10.1016/j.nano.2009.11.001
  • Boote E, Fent G, Kattumuri V, et al. Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol. 2010;17(4):410–417. doi:10.1016/j.acra.2010.01.00620207313
  • Chanda N, Shukla R, Katti KV, Kannan R. Gastrin releasing protein receptor specific gold nanorods : breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett. 2009;9(5):1798–1805. doi:10.1021/nl803714719351145
  • Fent GM, Casteel SW, Kim Y, et al. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed Nanotechnol Biol Med. 2009;5(2):128–135. doi:10.1016/j.nano.2009.01.007
  • Katti KK, Kattumuri V, Bhaskaran S, Katti KV, Kannan R. Facile and general method for synthesis of sugar-coated gold nanoparticles. Int J Green Nanotechnol Biomed. 2009;1(1):B53–B59. doi:10.1080/1943085090298384820011668
  • Katti K, Chanda N, Shukla R, et al. Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotechnol Biomed. 2009;1(1):B39–B52. doi:10.1080/1943085090293159919890490
  • Kattumuri V, Katti K, Bhaskaran S, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333–341. doi:10.1002/smll.20060042717262759
  • Sinha S, McKnight D, Katti KV, et al. Gold nanoparticles stabilized in gum arabic for corneal gene therapy. Invest Ophthalmol Vis Sci. 2008;49(13):4787. doi:10.1167/iovs.07-0624
  • Katti KV, Kannan R, Katti K, et al. Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys. 2006;56(4):D23. doi:10.1007/s10582-006-0484-9
  • Katti KV, Khoobchandani M, Thipe VC, et al. Prostate tumor therapy advances in nuclear medicine : green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. J Radioanal Nucl Chem. 2018;318(3):1737–1747. doi:10.1007/s10967-018-6320-4
  • Katti KV, Kannan R, Katti KK, Chanda N, Shukla R, inventor; University of Missouri System, assignee. Soy, lentil or extract stabilized, biocompatible gold nanoparticles. United States Patent US 9694032. 2017 7 4.
  • Gamal-Eldeen AM, Moustafa D, El-Daly SM, et al. Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed Pharmacother. 2017;89:1045–1054. doi:10.1016/j.biopha.2017.03.00628298068
  • Geraldes AN, Alves A, Leal J, et al. Green nanotechnology from plant extracts: synthesis and characterization of gold nanoparticles. Adv Nanopart. 2016;176–185. doi:10.4236/anp.2016.53019
  • Gamal-Eldeen AM, Moustafa D, El-Daly SM, et al. Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice. J Photochem Photobiol B Biol. 2016;163:47–56. doi:10.1016/j.jphotobiol.2016.08.009
  • You A, Be MAY, In I. Agarose-stabilized gold nanoparticles for surface-enhanced Raman spectroscopic detection of DNA nucleosides. 2015:153114. doi:10.1063/1.2192573
  • Khoobchandani M, Zambre A, Katti K, Lin C, Katti KV. Green nanotechnology from brassicaceae : development of broccoli phytochemicals – encapsulated gold nanoparticles and their applications in nanomedicine. Int J Green Nano. 2013. doi:10.1177/1943089213509474
  • Suganthy N, Sri Ramkumar V, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res. 2018;25(11):10418–10433. doi:10.1007/s11356-017-9789-4
  • Price NPJ, Vermillion KE, Eller FJ, Vaughn SF. Frost Grape Polysaccharide (FGP), an emulsion-forming arabinogalactan gum from the stems of native north american grape species vitis riparia michx. J Agric Food Chem. 2015. doi:10.1021/acs.jafc.5b02316
  • Granzotto C, Arslanoglu J, Rolando C, Tokarski C. Plant gum identification in historic artworks. Nat Publ Gr. 2017;1–15. doi:10.1038/srep44538
  • Cornelsen PA, Quintanilha RC, Vidotti M, Gorin PAJ, Simas-Tosin FF, Riegel-Vidotti IC. Native and structurally modified gum arabic: exploring the effect of the gum’s microstructure in obtaining electroactive nanoparticles. Carbohydr Polym. 2015;119:35–43. doi:10.1016/j.carbpol.2014.11.02025563942
  • Betzer O, Perets N, Angel A, et al. In Vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano. 2017;11(11):10883–10893. doi:10.1021/acsnano.7b0449528960957
  • Zhang Q, Iwakuma N, Sharma P, et al. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology. 2009;20(39):395102. doi:10.1088/0957-4484/20/39/39510219726840
  • Zhang Y, Chu W, Foroushani AD, et al. New gold nanostructures for sensor applications: A review. Materials (Basel). 2014;7(7):5169–5201. doi:10.3390/ma707516928788124
  • Selim ME, Hendi A. Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev. 2012;13(4):1617–1620. doi:10.7314/APJCP.2012.13.4.161722799377
  • Ali MRK, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci. 2017;114(28):E5655–E5663. doi:10.1073/pnas.170315111428652358
  • Spadavecchia J, Movia D, Moore C, et al. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int J Nanomedicine. 2016;11:791–822. doi:10.2147/IJN.S9747627013874
  • Khoo AM, Cho SH, Reynoso FJ, et al. Radiosensitization of prostate cancers in vitro and in vivo to erbium-filtered orthovoltage x-rays using actively targeted gold nanoparticles. Sci Rep. 2017;7(1):18044. doi:10.1038/s41598-017-18304-y29273727
  • Calavia PG, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci. 2018;512(SupplementC):249–259. doi:10.1016/j.jcis.2017.10.03029073466
  • Au M, Emeto T, Power J, Vangaveti V, Lai H. Emerging therapeutic potential of nanoparticles in pancreatic cancer: a systematic review of clinical trials. Biomedicines. 2016;4(3):20. doi:10.3390/biomedicines4030020
  • Tamarkin LI, Kingston DG. Exposing the tumor microenvironment: how gold nanoparticles enhance and refine drug delivery. Ther Deliv. 2017;8(6):363–366. doi:10.4155/tde-2016-009528530147
  • Kodiha M, Mahboubi H, Maysinger D, Stochaj U. Gold nanoparticles impinge on nucleoli and the stress response in MCF7 breast cancer cells. Nanobiomedicine. 2016;3:3. doi:10.5772/6233729942378
  • Lee J, Chatterjee DK, Leeb MH, Krishnana S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347(1):46–53. doi:10.1016/j.canlet.2014.02.006.Gold24556077
  • Ko J, Sethi G, Um J, et al. The role of resveratrol in cancer therapy. Int J Mol Sci. 2017;(1–36). doi:10.3390/ijms18122589
  • Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M. Anticancer molecular mechanisms of resveratrol. Front Nutr. 2016;3:8. doi:10.3389/fnut.2016.0000827148534
  • Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA. Asian Paci fi c Journal of Tropical Biomedicine. Asian Pac J Trop Biomed. 2017;7(12):1129–1150. doi:10.1016/j.apjtb.2017.10.016
  • Xiao Q, Zhu W, Feng W, Lee SS, Leung AW. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front Pharmacol. 2019;9:1–10. doi:10.3389/fphar.2018.01534
  • Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review AU - Rauf, Abdur. Crit Rev Food Sci Nutr. 2018;58(9):1428–1447. doi:10.1080/10408398.2016.126359728001084
  • Murakami Y, Kawata A, Ito S, Katayama T, Fujisawa S. The radical scavenging activity and cytotoxicity of resveratrol, orcinol and 4-allylphenol and their inhibitory effects on cox-2 gene expression and Νf-ĸb Activation in RAW264.7 Cells stimulated with porphyromonas gingivalis -fimbriae. In Vivo. 2015;350:341–349.
  • Pasanphan W, Rattanawongwiboon T, Choofong S, Güven O, Katti KK. Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms. Radiat Phys Chem. 2015;106:360–370. doi:10.1016/j.radphyschem.2014.08.023
  • Baronzio G, Parmar G, Baronzio M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front Oncol. 2015;5:1–17. doi:10.3389/fonc.2015.0016525667919
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Publ Gr. 2010;7(11):653–664. doi:10.1038/nrclinonc.2010.139
  • Mittapalli RK, Adkins CE, Mohammad A, Lockman PR, Virginia W. Quantitative fluorescence microscopy measures vascular pore size in primary and metastatic brain tumors. Cancer Res. 2018;77(2):238–246. doi:10.1158/0008-5472.CAN-16-1711