213
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo

, , , , , & show all
Pages 3669-3678 | Published online: 21 May 2019

References

  • Vijayaraman P, Bordachar P, Ellenbogen KA. The continued search for physiological pacing: where are we now? J Am Coll Cardiol. 2017;69(25):3099–3114. doi:10.1016/j.jacc.2017.05.00528641799
  • Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. Heart. 2016;102(3):184–190. doi:10.1136/heartjnl-2015-30787726643814
  • Plotnikov AN, Sosunov EA, Qu J, et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation. 2004;109(4):506–512.14734518
  • Auffret V, Puri R, Urena M, et al. Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives. Circulation. 2017;136(11):1049–1069. doi:10.1161/CIRCULATIONAHA.117.02835228893961
  • Kutty S, Danford DA, Diller GP, Tutarel O. Contemporary management and outcomes in congenitally corrected transposition of the great arteries. Heart. 2018;104(14):1148–1155. doi:10.1136/heartjnl-2016-31103229326110
  • Fujita B, Zimmermann WH. Engineered heart repair. Clin Pharmacol Ther. 2017;102(2):197–199. doi:10.1002/cpt.72428661033
  • Lee AY, Mahler N, Best C, Lee YU, Breuer CK. Regenerative implants for cardiovascular tissue engineering. Transl Res. 2014;163(4):321–341. doi:10.1016/j.trsl.2014.01.01424589506
  • Das A, Sinha M, Datta S, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 2015;185(10):2596–2606. doi:10.1016/j.ajpath.2015.06.00126118749
  • Weinberger F, Mannhardt I, Eschenhagen T. Engineering cardiac muscle tissue: a maturating field of research. Circ Res. 2017;120(9):1487–1500. doi:10.1161/CIRCRESAHA.117.31073828450366
  • Ren J, Xu Q, Chen X, et al. Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv mater. 2017;29(44). doi:10.1002/adma.201700681.
  • Ma SP, Vunjak-Novakovic G. Tissue-Engineering for the study of cardiac biomechanics. J Biomech Eng. 2016;138(2):021010. doi:10.1115/1.403299726720588
  • Kishan AP, Cosgriff-Hernandez EM. Recent advancements in electrospinning design for tissue engineering applications: A review. J Biomed Materres A. 2017;105(10):2892–2905. doi:10.1002/jbm.a.36124
  • Schroder HC, Tolba E, Diehl-Seifert B, Wang X, Muller WE. Electrospinning of bioactive wound-healing nets. Prog Mol Subcell Biol. 2017;55:259–290. doi:10.1007/978-3-319-51284-6_828238041
  • Feng B, Wang S, Hu D, et al. Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomater. 2019;83:211–220. doi:10.1016/j.actbio.2018.10.02230352286
  • He X, Feng B, Huang C, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine. 2015;10:2089–2099. doi:10.2147/IJN.S7946125834428
  • Fu W, Liu Z, Feng B, et al. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine. 2014;9:2335–2344. doi:10.2147/IJN.S6137524872696
  • Wang W, He J, Feng B, et al. Aligned nanofibers direct human dermal fibroblasts to tenogenic phenotype in vitro and enhance tendon regeneration in vivo. Nanomedicine (Lond). 2016;11(9):1055–1072. doi:10.2217/nnm.16.2427074092
  • Feng B, Tu H, Yuan H, Peng H, Zhang Y. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL. Biomacromolecules. 2012;13(12):3917–3925. doi:10.1021/bm300938923131188
  • Yao R, He J, Meng G, Jiang B, Wu F. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J Biomater Sci Polym Ed. 2016;27(9):824–838. doi:10.1080/09205063.2016.116056027044505
  • Strobel HA, Calamari EL, Beliveau A, Jain A, Rolle MW. Fabrication and characterization of electrospun polycaprolactone and gelatin composite cuffs for tissue engineered blood vessels. J Biomed Mater Res B Appl Biomater. 2018;106(2):817–826. doi:10.1002/jbm.b.3387128383795
  • Zaretski AV, Root SE, Savchenko A, et al. Metallic nanoislands on graphene as highly sensitive transducers of mechanical, biological, and optical signals. Nano Lett. 2016;16(2):1375–1380. doi:10.1021/acs.nanolett.5b0482126765039
  • Ahadian S, Zhou Y, Yamada S, et al. Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale. 2016;8(13):7075–7084. doi:10.1039/c5nr07059g26960413
  • Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9(1):323. doi:10.1038/s41467-017-02598-729358641
  • Jalaja K, Sreehari VS, Kumar PRA, Nirmala RJ. Graphene oxide decorated electrospun gelatin nanofibers: fabrication, properties and applications. Mater sci eng C Mater biol appl. 2016;64:11–19. doi:10.1016/j.msec.2016.03.03627127023
  • Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S, Nair SV. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology. 2015;26(16):161001. doi:10.1088/0957-4484/26/16/16100125824014
  • Liu H, Cheng J, Chen F, et al. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: biomimetic and in vitro evaluation. Nanoscale. 2014;6(10):5315–5322. doi:10.1039/c4nr00355a24699835
  • Shin SR, Zihlmann C, Akbari M, et al. Reduced graphene Oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small. 2016;12(27):3677–3689. doi:10.1002/smll.20160017827254107
  • Xing FY, Guan LL, Li YL, Jia CJ. Biosynthesis of reduced graphene oxide nanosheets and their in vitro cytotoxicity against cardiac cell lines of Catla catla. Environ Toxicol Pharmacol. 2016;48:110–115. doi:10.1016/j.etap.2016.09.02227770659
  • Smith AST, Yoo H, Yi H, et al. Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Chem Commun (Camb). 2017;53(53):7412–7415. doi:10.1039/c7cc01988b28634611
  • Heidari M, Bahrami H, Ranjbar-Mohammadi M. Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Mater sci eng C Mater biol appl. 2017;78:218–229. doi:10.1016/j.msec.2017.04.09528575978
  • Contreras-Torres FF, Rodriguez-Galvan A, Guerrero-Beltran CE, et al. Differential cytotoxicity and internalization of graphene family nanomaterials in myocardial cells. Mater sci eng C Mater biol appl. 2017;73:633–642. doi:10.1016/j.msec.2016.12.08028183655
  • Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72(1):156–165. doi:10.1002/jbm.b.3012815389493
  • Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13–22. doi:10.1038/nnano.2010.24621151110
  • Takahashi T, Nagai T, Kanda M, et al. Regeneration of the Cardiac Conduction System by Adipose Tissue-Derived Stem Cells. Circ J. 2015;79(12):2703–2712. doi:10.1253/circj.CJ-15-040026411528
  • Kim T, Kahng YH, Lee T, Lee K, Kim DH. Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cells. 2013;36(6):577–582. doi:10.1007/s10059-013-0277-524292978
  • Nezakati T, Cousins BG, Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol. 2014;88(11):1987–2012. doi:10.1007/s00204-014-1361-025234085
  • Tonelli FM, Goulart VA, Gomes KN, et al. Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine (Lond). 2015;10(15):2423–2450. doi:10.2217/nnm.15.6526244905
  • Waseem SH, Idrees MT, Croffie JM. Neuroenteric staining as a tool in the evaluation of pediatric motility disorders. Curr Gastroenterol Rep. 2015;17(8):30. doi:10.1007/s11894-015-0456-y26143629