318
Views
32
CrossRef citations to date
0
Altmetric
Original Research

Antidiabetic activity enhancement in streptozotocin + nicotinamide–induced diabetic rats through combinational polymeric nanoformulation

, , , , , & show all
Pages 4383-4395 | Published online: 12 Jun 2019

References

  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35(Supplement 1):S64–S71. doi:10.2337/dc12-s06422187472
  • World Health Organization. Global Report on Diabetes. Geneva: WHO; 2016.
  • Ganesan P, Arulselvan P, Choi DK. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus–current status. Int J Nanomedicine. 2017;12:1097–1111. doi:10.2147/IJN.S12460128223801
  • Kumar S, Dilbaghi N, Rani R, Bhanjana G, Umar A. Novel approaches for enhancement of drug bioavailability. Rev Adv Sci Eng. 2013;2(2):133–154. doi:10.1166/rase.2013.1038
  • Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv. 2016;6(97):94325–94351. doi:10.1039/C6RA15764E
  • Singh S, Pandey VK, Tewari RP, Agarwal V. Nanoparticle based drug delivery system: advantages and applications. Indian J Sci Technol. 2011;4(3):177–180.
  • Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. BioNanoScience. 2012;2(4):227–250. doi:10.1007/s12668-012-0060-7
  • Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients. 2016;8(8):461. doi:10.3390/nu8080461
  • Al-Enazi MM. Protective effects of combined therapy of Rutin with Silymarin on experimentally-induced diabetic neuropathy in rats. Pharmacol Pharm. 2014;5(9):876–890. doi:10.4236/pp.2014.59098
  • Kaur G, Invally M, Chintamaneni M. Influence of piperine and quercetin on antidiabetic potential of curcumin. J Complement Integr Med. 2016;13(3):247–255. doi:10.1515/jcim-2016-001627343476
  • Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22(6):709–724. doi:10.1002/ptr.236218446848
  • Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res. 2015;95–96:138–158.
  • Kalaiarasi P, Pugalendi KV. Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. Eur J Pharmacol. 2009;606(1):269–273. doi:10.1016/j.ejphar.2008.12.05719374864
  • Sangi SMA, Sulaiman MI, El-Wahab MFA, Ahmedani EI, Ali SS. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals. Pharmacogn Mag. 2015;11(Suppl 2):S251–S257. doi:10.4103/0973-1296.16601726664013
  • Jin S, Fu S, Han J, et al. Improvement of oral bioavailability of glycyrrhizin by sodium deoxycholate/phospholipid-mixed nanomicelles. J Drug Target. 2012;20(7):615–622. doi:10.3109/1061186X.2012.70277022726209
  • Alkharfy KM, Ahmad A, Khan RM, Al-Shagha WM. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur J Drug Metab Pharmacokinet. 2015;40(3):319–323. doi:10.1007/s13318-014-0207-824924310
  • Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci. 2017;106:220–230. doi:10.1016/j.ejps.2017.05.06828595874
  • Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact. 2018;295:119–132. doi:10.1016/j.cbi.2018.02.00629421519
  • Rani R, Dilbaghi N, Dhingra D, Kumar S. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery. Int J Biol Macromol. 2015;78:173–179. doi:10.1016/j.ijbiomac.2015.03.07025881957
  • Mojani MS, Sarmadi VH, Vellasamy S, et al. Evaluation of metabolic and immunological changes in streptozotocin-nicotinamide induced diabetic rats. Cell Immunol. 2014;289(1):145–149. doi:10.1016/j.cellimm.2014.04.00424791700
  • Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.4337382
  • Raschi AB, Romano E, Benavente AM, Altabef AB, Tuttolomondo ME. Structural and vibrational analysis of thymoquinone. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77(2):497–505. doi:10.1016/j.saa.2010.06.02620634122
  • Lide DR. CRC Handbook of Chemistry and Physics. 79th ed. Boca Raton, FL: CRC Press:1998.
  • Pagola S, Benavente A, Raschi A, Romano E, Molina MA, Stephens PW. Crystal structure determination of thymoquinone by high-resolution X-ray powder diffraction. AAPS PharmSciTech. 2004;5(2):24–31. doi:10.1208/pt050228
  • Rajkumar L, Srinivasan N, Balasubramanian K, Govindarajulu P. Increased degradation of dermal collagen in diabetic rats. Indian J Exp Biol. 1991;29(11):1081–1083.1816088
  • Bender D, Mayes P. Gluconeogenesis and the control of blood glucose In: Murray R, Granner D, Rodwell V, editors. Harper’S Illustrated Biochemistry. New York: McGraw-Hill; 2006:167–176.
  • Pari L, Sankaranarayanan C. Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin-nicotinamide induced diabetic rats. Life Sci. 2009;85(23):830–834. doi:10.1016/j.lfs.2009.10.02119903489
  • Chattopadhyay RR. Possible mechanism of antihyperglycemic effect of Azadirachta indica leaf extract: part V. J Ethnopharmacol. 1999;67(3):373–376.10617075
  • Pandey SK, Haldar C, Patel DK, Maiti P. Biodegradable polymers for potential delivery systems for therapeutics In: Dutta PK, Dutta J, editors. Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Heidelberg: Springer; 2013:169–202.
  • Avadi MR, Sadeghi AMM, Mohammadpour N, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine. 2010;6:58–63. doi:10.1016/j.nano.2009.04.00719447202
  • Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1):113–142. doi:10.1016/j.ijpharm.2009.10.01819825408
  • Myerson JW, Anselmo AC, Liu Y, Mitragotri S, Eckmann DM, Muzykantov VR. Non-affinity factors modulating vascular targeting of nano-and microcarriers. Adv Drug Deliv Rev. 2016;99:97–112. doi:10.1016/j.addr.2015.10.01126596696
  • Wu C, Wang L, Harbottle D, Masliyah J, Xu Z. Studying bubble-particle interactions by zeta potential distribution analysis. J Colloid Interface Sci. 2015;449(399–408). doi:10.1016/j.jcis.2015.01.040
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–4607. doi:10.1016/j.biomaterials.2007.07.02917675227
  • Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S. Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol. 2017;97:616–624. doi:10.1016/j.ijbiomac.2016.12.05928034824
  • Dilbaghi N, Kaur H, Ahuja M, Kumar S. Preparation and evaluation of enrofloxacin-loaded solid lipid nanoparticles. J Nanosci Nanotechnol. 2013;3(2):147–153.
  • Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag. 2016;12(47):198–202. doi:10.4103/0973-1296.18634727601850
  • Xue M, Yang MX, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomedicine. 2013;8:4677–4687. doi:10.2147/IJN.S5126224353417