96
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Fractionated photothermal therapy in a murine tumor model: comparison with single dose

, , , &
Pages 5369-5379 | Published online: 18 Jul 2019

References

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi:10.1038/nrc.2016.10827834398
  • Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38. doi:10.1016/J.ADDR.2016.04.02527137110
  • de Melo-Diogo D, Pais-Silva C, Dias DR, Moreira AF, Correia IJ. Strategies to improve cancer photothermal therapy mediated by nanomaterials. Adv Healthc Mater. 2017;6:10. doi:10.1002/adhm.201700073
  • Jaque D, Martínez Maestro L, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494–9530. doi:10.1039/c4nr00708e25030381
  • Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–R61. doi:10.1088/0031-9155/58/11/R3723666068
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12Part 1). Available from: http://cancerres.aacrjournals.org/content/46/12_Part_1/6387. Accessed July 15, 2017.
  • Greish K. Enhanced Permeability and Retention (EPR) effect for anticancer nanomedicine drug targeting In: Grobmyer SR, Moudgil BM, editors. Cancer Nanotechnology: Methods and Protocols. Totowa (NJ): Humana Press; 2010:25–37. doi:10.1007/978-1-60761-609-2_3
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5 APR. doi:10.3389/fphar.2014.00077
  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun. 2016;7:13193. doi:10.1038/ncomms1319327767031
  • Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL. Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small. 2010;6(6):745–752. doi:10.1002/smll.20090155720183810
  • Stern JM, Stanfield J, Kabbani W, Hsieh J-T, Cadeddu JA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol. 2008;179(2):748–753. doi:10.1016/j.juro.2007.09.01818082199
  • Day ES, Thompson PA, Zhang L, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol. 2011;104(1):55–63. doi:10.1007/s11060-010-0470-821110217
  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209(2):171–176. doi:10.1016/J.CANLET.2004.02.00415159019
  • Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2(8):1001–1014. doi:10.4155/tde.11.7222506095
  • Ayala-Orozco C, Urban C, Bishnoi S, et al. Sub-100 nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J Control Release. 2014;191:90–97. doi:10.1016/j.jconrel.2014.07.03825051221
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci. 2003;100(23):13549–13554. doi:10.1073/PNAS.223247910014597719
  • Sato K, Sato N, Xu B, et al. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci Transl Med. 2016;8(352):352ra110LP–352ra110. doi:10.1126/scitranslmed.aaf0746
  • Bear AS, Kennedy LC, Young JK, et al. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. Najbauer J, ed. PLoS One. 2013;8(7):e69073. doi:10.1371/journal.pone.006907323935927
  • Piao J-G, Gao F, Yang L. Acid-responsive therapeutic polymer for prolonging nanoparticle circulation lifetime and destroying drug-resistant tumors. ACS Appl Mater Interfaces. 2016;8(1):936–944. doi:10.1021/acsami.5b1055026654626
  • Piao J-G, Liu D, Hu K, et al. Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage. ACS Appl Mater Interfaces. 2016;8(4):2847–2856. doi:10.1021/acsami.5b1166426794418
  • Dombrovsky L, Timchenko V, Jackson M. Indirect Heating Strategy of Laser Induced Hyperthermia: An Advanced Thermal Model. Vol. 55; 2012. doi:10.1016/j.ijheatmasstransfer.2012.04.029
  • El-Sayed MA, Ali M, Ibrahim I, Ali H, Selim S. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. Int J Nanomedicine. 2016;11:4849–4863. doi:10.2147/IJN.S10947027703351
  • Gutwein LG, Singh AK, Hahn MA, et al. Fractionated photothermal antitumor therapy with multidye nanoparticles. Int J Nanomedicine. 2012;7:351–357. doi:10.2147/IJN.S2646822287844
  • Hsiao CW, Chuang EY, Chen HL, et al. Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials. 2015;56:26–35. doi:10.1016/j.biomaterials.2015.03.06025934276
  • Dombrovsky LA, Timchenko V, Jackson M, Yeoh GH. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int J Heat Mass Transf. 2011;54(25):5459–5469. doi:10.1016/j.ijheatmasstransfer.2011.07.045
  • Ren Y, Qi H, Chen Q, Ruan L. Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int J Heat Mass Transf. 2017;106(C):212–221. doi:10.1016/j.ijheatmasstransfer.2016.10.067
  • Jørgensen JT, Norregaard K, Simón Martín M, Oddershede LB, Kjaer A. Non-invasive early response monitoring of nanoparticle-assisted photothermal cancer therapy. Nanotheranostics. 2018;2(3):201–210. doi:10.7150/ntno.2447829868345
  • Jørgensen JT, Nørregaard K, Tian P, Bendix PM, Kjaer A, Oddershede LB. Single particle and PET-based platform for identifying optimal plasmonic nano-heaters for photothermal cancer therapy. Sci Rep. 2016;6:30076. doi:10.1038/srep3007627481537
  • Pilot study of AuroLaseTM therapy in refractory and/or recurrent tumors of the head and neck [Internet]. Available from: http://clinicaltrials.gov/ct2/show/NCT00848042 Accessed May 20, 2019.
  • Pedrosa P, Vinhas R, Fernandes A, Baptista P. Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials. 2015;5(4):1853–1879. doi:10.3390/nano504185328347100
  • MRI/US fusion imaging and biopsy in combination with nanoparticle directed focal therapy for ablation of prostate tissue [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02680535 Accessed May 20, 2019.
  • Gad SC, Sharp KL, Montgomery C, Payne JD, Goodrich GP. Evaluation of the toxicity of intravenous delivery of auroshell particles (Gold–silica Nanoshells). Int J Toxicol. 2012;31(6):584–594. doi:10.1177/109158181246596923212452
  • Norregaard K, Jørgensen JT, Simón M, et al. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy. PLoS One. 2017;12(5):e0177997. doi:10.1371/journal.pone.017799728542311
  • Ayala-Orozco C, Urban C, Knight MW, et al. Au nanomatryoshkas as E ffi cient transducers for cancer treatment: benchmarking against nanoshells. ACS Nano. 2014;8(6):6372–6381. doi:10.1021/nn501871d24889266
  • Jirkof P, Tourvieille A, Cinelli P, Arras M. Buprenorphine for pain relief in mice: repeated injections vs sustained-release depot formulation. Lab Anim. 2014;49(3):177–187. doi:10.1177/002367721456284925488320
  • Kang X, Guo X, An W, et al. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci Rep. 2017;7:1–14. doi:10.1038/srep4206928127051
  • Liu H, Chen D, Tang F, et al. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology. 2008;19(45):455101. doi:10.1088/0957-4484/19/45/45510121832760
  • Lin KY, Bagley AF, Zhang AY, Karl DL, Yoon SS, Bhatia SN. Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma. Nano Life. 2010;1(03n04):277–287. doi:10.1142/S1793984410000262
  • Yang TD, Choi W, Yoon TH, et al. In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells. Biomed Opt Express. 2016;7(1):185–193. doi:10.1364/BOE.7.00018526819827
  • Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):655–677. doi:10.1002/wnan.133925707913
  • Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013;172(1):38–47. doi:10.1016/j.jconrel.2013.07.02623933235
  • Laverman P, Carstens MG, Boerman OC, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther. 2001;298(2):607–612. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11454922.11454922
  • Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano. 2014;8(10):10414–10425. doi:10.1021/nn503779d25286086
  • Strong LE, West JL. Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles. ACS Biomater Sci Eng. 2015;1(8):685–692. doi:10.1021/acsbiomaterials.5b0011126366438