303
Views
22
CrossRef citations to date
0
Altmetric
Review

Advances in nanocarriers as drug delivery systems in Chagas disease

, , , , , & show all
Pages 6407-6424 | Published online: 09 Aug 2019

References

  • Echeverria LE, Morillo CA. American trypanosomiasis (Chagas disease). Infect Dis Clin. 2019;33(1):119–134. doi:10.1016/j.idc.2018.10.015
  • Andrade DV, Gollob KJ, Dutra WO. Acute Chagas disease: new global challenges for an old neglected disease. PLoS Negl Trop Dis. 2014;8(7):e3010. doi:10.1371/journal.pntd.000301025077613
  • Hotez PJ, Molyneux DH, Fenwick A, et al. Control of neglected tropical diseases. N Engl J Med. 2007;357(10):1018–1027. doi:10.1056/NEJMra06414217804846
  • Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis. 2001;1(2):92–100. doi:10.1016/S1473-3099(01)00065-211871482
  • Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94. doi:10.1016/S0140-6736(17)31612-428673423
  • Sánchez-Valdéz FJ, Pérez Brandán C, Ferreira A, Basombrío MÁ. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease. Expert Rev Vaccines. 2015;14(5):681–697. doi:10.1586/14760584.2015.98998925496192
  • Barratt GM. Therapeutic applications of colloidal drug carriers. Pharm Sci Technolo Today. 2000;3(5):163–171. doi:10.1016/S1461-5347(00)00255-810785658
  • Damhorst GL, Murtagh M, Rodriguez WR, Bashir R. Microfluidics and nanotechnology for detection of global infectious diseases. Proc IEEE. 2015;103(2):150–160. doi:10.1109/JPROC.2014.2385078
  • Galvin P, Thompson D, Ryan KB, et al. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci. 2012;69(3):389–404. doi:10.1007/s00018-011-0856-622015612
  • Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31(5):199–205. doi:10.1016/j.tips.2010.01.00320172613
  • Seigneuric R, Markey L, Nuyten DS, et al. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med. 2010;10(7):640–652.20712588
  • Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol Ther. 2010;128(2):324–335. doi:10.1016/j.pharmthera.2010.07.00720705093
  • Dellian M, Yuan F, Trubetskoy V, Torchilin V, Jain R. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer. 2000;82(9):1513.10789717
  • He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666. doi:10.1016/j.biomaterials.2010.01.06520138662
  • Sankaranarayanan J, Mahmoud EA, Kim G, Morachis JM, Almutairi A. Multiresponse strategies to modulate burst degradation and release from nanoparticles. ACS Nano. 2010;4(10):5930–5936. doi:10.1021/nn100968e20828178
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543. doi:10.1038/nmat244219525947
  • Arvizo RR, Miranda OR, Moyano DF, et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011;6(9):e24374. doi:10.1371/journal.pone.002437421931696
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci. 2008;105(33):11613–11618. doi:10.1073/pnas.080176310518697944
  • Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome− cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998;37(37):12875–12883. doi:10.1021/bi980096y9737866
  • Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf B Biointerfaces. 2009;71(2):325–330. doi:10.1016/j.colsurfb.2009.03.00419361963
  • Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm. 2008;364(2):272–280. doi:10.1016/j.ijpharm.2008.04.03618555624
  • Serda RE, Gu J, Bhavane RC, et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials. 2009;30(13):2440–2448. doi:10.1016/j.biomaterials.2009.01.01919215978
  • Valente I, Celasco E, Marchisio D, Barresi A. Nanoprecipitation in confined impinging jets mixers: production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use. Chem Eng Sci. 2012;77:217–227. doi:10.1016/j.ces.2012.02.050
  • Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001–1018. doi:10.2147/IJN.S5693225678788
  • Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid St Mate Sci. 2002;6(4):319–327. doi:10.1016/S1359-0286(02)00117-1
  • Hu X, Zou G. Biodegradable polymeric nanoparticles as drug delivery systems. Amino Acids Biotic Resour. 2003;2(1–2):1–20.
  • Gonzalez-Martin G, Merino I, Rodriguez-Cabezas MN, Torres M, Nunez R, Osuna A. Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J Pharm Pharmacol. 1998;50(1):29–35.9580223
  • Müller RH, Lherm C, Herbert J, Couvreur P. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials. 1990;11(8):590–595.2279061
  • Gonzalez-Martin G, Figueroa C, Merino I, Osuna A. Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: preparation and trypanocidal activity. Eur J Pharm Biopharm. 2000;49(2):137–142.10704896
  • Molina J, Urbina J, Gref R, Brener Z, Rodriguez JM. Cure of experimental Chagas’ disease by the bis-triazole DO870 incorporated into ‘stealth’ polyethyleneglycol-polylactide nanospheres. J Antimicrob Chemother. 2001;47(1):101–104. doi:10.1093/jac/47.1.10111152439
  • GFP DS, Yokoyama-Yasunaka JK, Seabra AB, Miguel DC, de Oliveira MG, Uliana SRB. Leishmanicidal activity of primary S-nitrosothiols against Leishmania major and Leishmania amazonensis: implications for the treatment of cutaneous leishmaniasis. Nitric Oxide. 2006;15(3):209–216. doi:10.1016/j.niox.2006.01.01116527502
  • Gil-Jaramillo N, Motta FN, Favali CB, Bastos I, Santana JM. Dendritic cells: a double-edged sword in immune responses during Chagas disease. Front Microbiol. 2016;7:1076. doi:10.3389/fmicb.2016.0107627471496
  • Gutierrez FR, Mineo TW, Pavanelli WR, Guedes PM, Silva JS. The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz. 2009;104(2):236–245. doi:10.1590/s0074-0276200900090003019753479
  • Seabra AB, Da Silva R, De Souza GF, De Oliveira MG. Antithrombogenic Polynitrosated Polyester/Poly (methyl methacrylate) blend for the coating of blood‐contacting surfaces. Artif Organs. 2008;32(4):262–267. doi:10.1111/j.1525-1594.2008.00540.x18370938
  • Amadeu TP, Seabra AB, De Oliveira MG, Costa AM. S‐nitrosoglutathione‐containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol. 2007;21(5):629–637. doi:10.1111/j.1468-3083.2006.02032.x17447976
  • Seabra AB, Kitice NA, Pelegrino MT, et al. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi. J Phys: Conf Ser 2015;617:012020. doi:10.1088/1742-6596/617/1/012020
  • Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21–22):958–965. doi:10.1016/j.drudis.2010.08.00720727418
  • Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’drug delivery systems. Eur J Pharm Sci. 2000;11(2):S93–S98.11033431
  • Sposito PA, Mazzeti AL, Faria CD, et al. Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity. Int J Nanomedicine. 2017;12:3785–3799. doi:10.2147/IJN.S13370828553114
  • Branquinho RT, Mosqueira VCF, JCV DO-S, Simoes-Silva MR, Saude-Guimaraes DA, de Lana M. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental Chagas disease. Antimicrob Agents Chemother. 2014;58(4):2067–2075. doi:10.1128/AAC.00617-1324449777
  • Abriata JP, Eloy JO, Riul TB, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. Mater Sci Eng C Mater Biol Appl. 2017;77:1196–1203. doi:10.1016/j.msec.2017.03.26628531996
  • Rial MS, Scalise ML, Arrua EC, Esteva MI, Salomon CJ, Fichera LE. Elucidating the impact of low doses of nano-formulated benznidazole in acute experimental Chagas disease. PLoS Negl Trop Dis. 2017;11(12):e0006119. doi:10.1371/journal.pntd.000611929267280
  • Tessarolo LD, Mello CP, Lima DB, et al. Nanoencapsulation of benznidazole in calcium carbonate increases its selectivity to Trypanosoma cruzi. Parasitology. 2018;145(9):1–8. doi:10.1017/S003118201700185829144211
  • Fujiwara M, Shiokawa K, Morigaki K, Zhu Y, Nakahara Y. Calcium carbonate microcapsules encapsulating biomacromolecules. Chem Eng J. 2008;137(1):14–22. doi:10.1016/j.cej.2007.09.010
  • Seremeta KP, Arrúa EC, Okulik NB, Salomon CJ. Development and characterization of benznidazole nano-and microparticles: a new tool for pediatric treatment of Chagas disease? Colloids Surf B Biointerfaces. 2019;177:169–177. doi:10.1016/j.colsurfb.2019.01.03930731393
  • Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1167–1176. doi:10.1016/j.addr.2008.03.00318479776
  • Crommelin DJ, Schreier H. Liposomes In: Kreuter J, editor. Colloidal Drug Delivery Systems. Boca Raton: CRC Press; 2014:85–159.
  • Mody N, Tekade RK, Mehra NK, Chopdey P, Jain NK. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech. 2014;15(2):388–399. doi:10.1208/s12249-014-0073-324431104
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305.17979650
  • Morilla MJ, Montanari JA, Prieto MJ, Lopez MO, Petray PB, Romero EL. Intravenous liposomal benznidazole as trypanocidal agent: increasing drug delivery to liver is not enough. Int J Pharm. 2004;278(2):311–318. doi:10.1016/j.ijpharm.2004.03.02515196636
  • Soto CDA, Mirkin GA, Solana ME, Cappa SMG. Trypanosoma cruzi infection modulates in vivo expression of major histocompatibility complex class II molecules on antigen-presenting cells and T-cell stimulatory activity of dendritic cells in a strain-dependent manner. Infect Immun. 2003;71(3):1194–1199. doi:10.1128/iai.71.3.1194-1199.200312595432
  • Morilla MJ, Montanari J, Frank F, et al. Etanidazole in pH-sensitive liposomes: design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. J Control Release. 2005;103(3):599–607. doi:10.1016/j.jconrel.2004.12.01215820407
  • Espada R, Valdespina S, Alfonso C, Rivas G, Ballesteros MP, Torrado JJ. Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm. 2008;361(1–2):64–69. doi:10.1016/j.ijpharm.2008.05.01318599228
  • Torrado J, Espada R, Ballesteros M, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97(7):2405–2425. doi:10.1002/jps.2117917893903
  • Actor P, Wind S, Pagano J. Potentiation of amphotericin B activity against trypanosoma congolense in mice. Proc Soc Exp Biol Med. 1962;110(3):409–412. doi:10.3181/00379727-110-2753213859221
  • Rolon M, Seco EM, Vega C, et al. Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int J Antimicrob Agents. 2006;28(2):104–109. doi:10.1016/j.ijantimicag.2006.02.02516844353
  • Yardley V, Croft SL. In vitro and in vivo activity of amphotericin B-lipid formulations against experimental Trypanosoma cruzi infections. Am J Trop Med Hyg. 1999;61(2):193–197. doi:10.4269/ajtmh.1999.61.19310463666
  • Torrado JJ, Serrano DR, Uchegbu IF. The oral delivery of amphotericin B. Ther Deliv. 2013;4(1):9–12.23401912
  • Cencig S, Coltel N, Truyens C, Carlier Y. Parasitic loads in tissues of mice infected with trypanosoma cruzi and treated with AmBisome. PLoS Negl Trop Dis. 2011;5(6):e1216. doi:10.1371/journal.pntd.000137021738811
  • Tarleton R. Trypanosoma cruzi and Chagas disease: cause and effect. In: Tyler KM, Miles MA, editors. American Trypanosomiasis. World Class Parasites, vol 7 Boston: Springer; 2003:107–115.
  • Ferrari M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 2010;28(4):181–188. doi:10.1016/j.tibtech.2009.12.00720079548
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64(2–3):83–101. doi:10.1016/j.addr.2012.09.021
  • Müller RH, MaÈder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.10840199
  • Tomiotto-Pellissier F, Miranda-Sapla MM, Machado LF, et al. Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Trop. 2017;174:64–71. doi:10.1016/j.actatropica.2017.06.02528668252
  • Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–1272. doi:10.1016/j.addr.2003.12.00215109768
  • Muller RH. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm. 1995;41(1):62–69.
  • Carneiro ZA, Maia PID, Sesti-Costa R, et al. In vitro and in vivo trypanocidal activity of H(2)bdtc-loaded solid lipid nanoparticles. PLoS Negl Trop Dis. 2014;8(5):e2847. doi:10.1371/journal.pntd.000284724810753
  • Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984;308(5958):457. doi:10.1038/308457a06709052
  • Wilson NS, Duewell P, Yang B, et al. Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant. J Immunol. 2014;192(7):3259–3268. doi:10.4049/jimmunol.130201124610009
  • Lendemans DG, Egert AM, Hook S, Rades T. Cage-like complexes formed by DOTAP, Quil-A and cholesterol. Int J Pharm. 2007;332(1–2):192–195. doi:10.1016/j.ijpharm.2006.09.02917049770
  • Friede M, Hermand P, inventors; SmithKline Beechman Biologicals s.a., assignee. Vaccine Adjuvants. United States patent 6558670. 2003 May 6.
  • Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009;27(33):4388–4401. doi:10.1016/j.vaccine.2009.05.03219450632
  • Cruz-Bustos T, Gonzalez-Gonzalez G, Morales-Sanfrutos J, Megia-Fernandez A, Santoyo-Gonzalez F, Osuna A. Functionalization of immunostimulating complexes (ISCOMs) with lipid vinyl sulfones and their application in immunological techniques and therapy. Int J Nanomedicine. 2012;7(2):5941–5956. doi:10.2147/IJN.S3555623233802
  • Nhavene EPF, Da Silva WM, Junior RRT, et al. Chitosan grafted into mesoporous silica nanoparticles as benznidazol carrier for Chagas diseases treatment. Microporous Mesoporous Mater. 2018;272:265–275. doi:10.1016/j.micromeso.2018.06.035
  • Eger I, Soares MJ. Endocytosis in Trypanosoma cruzi (Euglenozoa: kinetoplastea) epimastigotes: visualization of ingested transferrin-gold nanoparticle complexes by confocal laser microscopy. J Microbiol Methods. 2012;91(1):101–105. doi:10.1016/j.mimet.2012.07.01322820201
  • Ho CC, Luo YH, Chuang TH, Yang CS, Ling YC, Lin P. Quantum dots induced monocyte chemotactic protein-1 expression via MyD88-dependent Toll-like receptor signaling pathways in macrophages. Toxicology. 2013;308:1–9. doi:10.1016/j.tox.2013.03.00323499856
  • Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC. In vivo quantum-dot toxicity assessment. Small. 2010;6(1):138–144. doi:10.1002/smll.20090062619743433
  • Wu T, Tang M. Toxicity of quantum dots on respiratory system. Inhal Toxicol. 2014;26(2):128–139. doi:10.3109/08958378.2013.87176224495248
  • Chen N, He Y, Su Y, et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012;33(5):1238–1244. doi:10.1016/j.biomaterials.2011.10.07022078811
  • Nagy A, Hollingsworth JA, Hu B, et al. Functionalization-dependent induction of cellular survival pathways by CdSe quantum dots in primary normal human bronchial epithelial cells. ACS Nano. 2013;7(10):8397–8411. doi:10.1021/nn305532k24007210
  • Stahl CV, Almeida DB, de Thomaz AA, et al. Studying nanotoxic effects of CdTe Quantum Dots in Trypanosoma cruzi Colloidal Quantum Dots for Biomedical Applications V. Proc. SPIE 7575, Colloidal Quantum Dots for Biomedical Applications V, 757513; February 17; 2010; San Francisco, CA.
  • de Araujo SC, de Mattos AC, Teixeira HF, Coelho PM, Nelson DL, de Oliveira MC. Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. Int J Pharm. 2007;337(1–2):307–315. doi:10.1016/j.ijpharm.2007.01.00917292573
  • Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 2005;2(4):297–310.16305433
  • Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–127. doi:10.1007/s13205-014-0214-0
  • Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2(05):626. doi:10.4236/jbnb.2011.225075
  • de Oliveira ECV, Carneiro ZA, de Albuquerque S, Marchetti JM. Development and evaluation of a nanoemulsion containing ursolic acid: a promising trypanocidal agent. AAPS PharmSciTech. 2017;18(7):2551–2560. doi:10.1208/s12249-017-0736-y28224391
  • Vermelho AB, Cardoso VD, Ricci E, Dos Santos EP, Supuran CT. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. J Enzyme Inhib Med Chem. 2017;33(1):139–146. doi:10.1080/14756366.2017.1405264
  • Streck L, Sarmento VH, de Menezes RP, Fernandes-Pedrosa MF, Martins AM, da Silva-Júnior AA. Tailoring microstructural, drug release properties, and antichagasic efficacy of biocompatible oil-in-water benznidazol-loaded nanoemulsions. Int J Pharm. 2019;555:36–48. doi:10.1016/j.ijpharm.2018.11.04130448310
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1. doi:10.1007/s11095-007-9271-y17109211
  • Chiappetta DA, Poly SA. Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66(3):303–317. doi:10.1016/j.ejpb.2007.03.02217481869
  • Attia ABE, Ong ZY, Hedrick JL, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci. 2011;16(3):182–194. doi:10.1016/j.cocis.2010.10.003
  • Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815. doi:10.1038/nnano.2011.16622020122
  • Hu C-MJ, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;10(8):836–841.20214578
  • Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 2012;64(2–3):237–245. doi:10.1016/j.addr.2012.09.016
  • Rolon M, Serrano DR, Lalatsa A, et al. Engineering oral and parenteral amorphous amphotericin B formulations against experimental trypanosoma cruzi infections. Mol Pharm. 2017;14(4):1095–1106. doi:10.1021/acs.molpharmaceut.6b0103428198632
  • Huang L, Wei G, Sun X, et al. A tumor-targeted Ganetespib-zinc phthalocyanine conjugate for synergistic chemo-photodynamic therapy. Eur J Med Chem. 2018;151:294–303. doi:10.1016/j.ejmech.2018.03.07729627724
  • Mai B, Gao Y, Li M, et al. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine. 2017;12:5915. doi:10.2147/IJN.S13818528860757
  • Yuan Y, Liu Z-Q, Jin H, et al. Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: in vitro and in vivo studies. PLoS One. 2017;12(5):e0176529. doi:10.1371/journal.pone.017652928493985
  • de Morais FAP, Enumo A, Gonçalves RS, et al. Hypericin photodynamic activity. Part III: in vitro evaluation in different nanocarriers against trypomastigotes of trypanosoma cruzi. Photochem Photobiol Sci. 2019;18(2):487–494. doi:10.1039/C8PP00444G30534717
  • Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn. 2003;3(2):153–161. doi:10.1586/14737159.3.2.15312647993
  • Singh RP, Oh BK, Choi JW. Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry. 2010;79(2):153–161. doi:10.1016/j.bioelechem.2010.02.00420356802
  • Patolsky F, Zheng G, Lieber CM. Nanowire-based Biosensors. Anal Chem. 2006;78(13):4260–4269.
  • Pereira SV, Bertolino FA, Fernandez-Baldo MA, et al. A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst. 2011;136(22):4745–4751. doi:10.1039/c1an15569e21984978
  • Castro-Sesquen YE, Gilman RH, Galdos-Cardenas G, et al. Use of a novel Chagas urine nanoparticle test (Chunap) for diagnosis of congenital Chagas disease. PLoS Negl Trop Dis. 2014;8(10):e3211. doi:10.1371/journal.pntd.000321125275534
  • Janissen R, Sahoo PK, Santos CA, et al. InP nanowire biosensor with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett. 2017;17(10):5938–5949. doi:10.1021/acs.nanolett.7b0180328895736
  • Vaculovicova M, Michalek P, Krizkova S, Macka M, Adam V. Nanotechnology-based analytical approaches for detection of viruses. Anal Methods. 2017;9(16):2375–2391. doi:10.1039/C7AY00048K
  • M-I R-G, L-J V-G, Beyssen D, Sarry F, Reyna M-A, Ibarra-Cerdeña C-N. Biosensors to diagnose chagas disease: a brief review. Sensors. 2017;17(11):2629. doi:10.3390/s17050968
  • Araújo AF, de Alencar BC, Vasconcelos JRC, et al. CD8+-T-cell-dependent control of Trypanosoma cruzi infection in a highly susceptible mouse strain after immunization with recombinant proteins based on amastigote surface protein 2. Infect Immun. 2005;73(9):6017–6025. doi:10.1128/IAI.73.9.6017-6025.200516113322
  • de Alencar BC, Araújo AF, Penido ML, Gazzinelli RT, Rodrigues MM. Cross-priming of long lived protective CD8+ T cells against Trypanosoma cruzi infection: importance of a TLR9 agonist and CD4+ T cells. Vaccine. 2007;25(32):6018–6027. doi:10.1016/j.vaccine.2007.05.02217629597
  • Hoft DF, Schnapp AR, Eickhoff CS, Roodman ST. Involvement of CD4+ Th1 cells in systemic immunity protective against primary and secondary challenges with trypanosoma cruzi. Infect Immun. 2000;68(1):197–204. doi:10.1128/iai.68.1.197-204.200010603388
  • Low HP, Santos MA, Wizel B, Tarleton RL. Amastigote surface proteins of Trypanosoma cruzi are targets for CD8+ CTL. J Immunol. 1998;160(4):1817–1823.9469442
  • Miller MJ, Wrightsman RA, Manning JE. Trypanosoma cruzi: protective immunity in mice immunized with paraflagellar rod proteins is associated with a T-helper type 1 response. Exp Parasitol. 1996;84(2):156–167. doi:10.1006/expr.1996.01018932765
  • Tarleton R. Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with trypanosoma cruzi. J Immunol. 1990;144(2):717–724.2104903
  • Tarleton RL, Sun J, Zhang L, Postan M. Depletion of T-cell subpopulations results in exacerbation of myocarditis and parasitism in experimental Chagas’ disease. Infect Immun. 1994;62(5):1820–1829.8168945
  • Dumonteil E, Bottazzi ME, Zhan B, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines. 2012;11(9):1043–1055. doi:10.1586/erv.12.8523151163
  • Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138(5):779.24434331
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. doi:10.3389/fimmu.2013.0011423720661
  • Bertona D, Pujato N, Bontempi I, et al. Development and assessment of a new cage-like particle adjuvant. J Pharm Pharmacol. 2017;69(10):1293–1303. doi:10.1111/jphp.1276828664569
  • Kita Y, Tanaka T, Yoshida S, et al. Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine. 2005;23(17–18):2132–2135. doi:10.1016/j.vaccine.2005.01.05715755583
  • Santos FR, Ferraz DB, Daghastanli KR, Ramalho-Pinto FJ, Ciancaglini P. Mimetic membrane system to carry multiple antigenic proteins from Leishmania amazonensis. J Membr Biol. 2006;210(3):173–181. doi:10.1007/s00232-006-0005-616909340
  • Mesa C, de León J, Rigley K, Fernández LE. Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation. Vaccine. 2004;22(23–24):3045–3052. doi:10.1016/j.vaccine.2004.02.01015297054
  • Migliaccio V, Santos FR, Ciancaglini P, Ramalho-Pinto FJ. Use of proteoliposome as a vaccine against Trypanosoma cruzi in mice. Chem Phys Lipids. 2008;152(2):86–94. doi:10.1016/j.chemphyslip.2007.12.00318262496
  • Engman D, Krause K, Blumin J, Kim K, Kirchhoff L, Donelson J. A novel flagellar Ca2+-binding protein in trypanosomes. J Biol Chem. 1989;264(31):18627–18631.2681200
  • Krautz G, Kissinger J, Krettli A. The targets of the lytic antibody response against Trypanosoma cruzi. Parasitol Today. 2000;16(1):31–34.10637586
  • Taibi A, Plumas-Marty B, Guevara-Espinoza A, et al. Trypanosoma cruzi: immunity-induced in mice and rats by trypomastigote excretory-secretory antigens and identification of a peptide sequence containing a T cell epitope with protective activity. J Immunol. 1993;151(5):2676–2689.7689612
  • Taibi A, Espinoza AG, Ouaissi A. Trypanosoma cruzi: analysis of cellular and humoral response against a protective recombinant antigen during experimental Chagas’ disease. Immunol Lett. 1995;48(3):193–200.8867851
  • Godsel LM, Tibbetts RS, Olson CL, Chaudoir BM, Engman DM. Utility of recombinant flagellar calcium-binding protein for serodiagnosis of Trypanosoma cruzi infection. J Clin Microbiol. 1995;33(8):2082–2085.7559952
  • Guevara A, Taibi A, Alava J, Guderian R, Ouaissi A. Use of a recombinant Trypanosoma cruzi protein antigen to monitor cure of Chagas disease. Trans R Soc Trop Med Hyg. 1995;89(4):447–448. doi:10.1016/0035-9203(95)90052-77570896
  • Vabulas RM, Pircher H, Lipford GB, Häcker H, Wagner H. CpG-DNA activates in vivo T cell epitope presenting dendritic cells to trigger protective antiviral cytotoxic T cell responses. J Immunol. 2000;164(5):2372–2378. doi:10.4049/jimmunol.164.5.237210679072
  • Speiser DE, Liénard D, Rufer N, et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 2005;115(3):739–746. doi:10.1172/JCI2337315696196
  • Barry MA, Wang Q, Jones KM, et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccin Immunother. 2016;12(4):976–987. doi:10.1080/21645515.2015.111934626890466
  • Hyland KV, Leon JS, Daniels MD, et al. Modulation of autoimmunity by treatment of an infectious disease. Infect Immun. 2007;75(7):3641–3650. doi:10.1128/IAI.00423-0717485457
  • Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115(9):1109. doi:10.1161/CIRCULATIONAHA.106.62429617339569
  • Rocha M, Ribeiro A, Teixeira MM. Clinical management of chronic Chagas cardiomyopathy. Front Biosci. 2003;8(1):44–54. doi:10.2741/926
  • Tarleton RL. Parasite persistence in the aetiology of Chagas disease. Int J Parasitol. 2001;31(5–6):550–554.11334941
  • Branquinho RT, Pound-Lana G, Milagre MM, et al. Increased body exposure to new anti-trypanosomal through nanoencapsulation. Sci Rep. 2017;7(1):8429. doi:10.1038/s41598-017-08469-x28814794
  • Morilla MJ, Prieto MJ, Romero EL. Benznidazole vs benznidazole in multilamellar liposomes: how different they interact with blood components? Mem Inst Oswaldo Cruz. 2005;100(2):213–219. doi:10.1590/s0074-0276200500020001716021311
  • Alderson NE. Is special FDA regulation of nanomedicine needed? A conversation with Norris E. Alderson. Interview by Barbara J Culliton. Health Aff (Millwood). 2008;27(4):w315–w317. doi:10.1377/hlthaff.27.4.w31518559355
  • Clemons KV, Sobel RA, Martinez M, Correa-Oliveira R, Stevens DA. Lack of efficacy of liposomal amphotericin B against acute and chronic trypanosoma cruzi infection in mice. Am J Trop Med Hyg. 2017;97(4):1141–1146. doi:10.4269/ajtmh.16-097528820684
  • de Souza W, Sant’Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem. 2009;44(2):67–124. doi:10.1016/j.proghi.2009.01.00119410686
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515. doi:10.1021/mp800051m18672949
  • Gentile F, Chiappini C, Fine D, et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech. 2008;41(10):2312–2318. doi:10.1016/j.jbiomech.2008.03.02118571181
  • Yoshihara E, Tachibana H, Nakae T. Trypanocidal activity of the stearylamine-bearing liposome in vitro. Life Sci. 1987;40(22):2153–2159. doi:10.1016/0024-3205(87)90005-13295443