119
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Study of the interaction between self-assembling peptide and mangiferin and in vitro release of mangiferin from in situ hydrogel

, , , , , & show all
Pages 7447-7460 | Published online: 12 Sep 2019

References

  • Qiu F, Chen Y, Tang C, et al. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs. Int J Nanomedicine. 2015;10:847–858. doi:10.2147/IJN.S7169625670898
  • Qi X, Wei W, Li J, et al. Design of Salecan-containing semi-IPN hydrogel for amoxicillin delivery. Mater Sci Eng C. 2017;75:487–494. doi:10.1016/j.msec.2017.02.089
  • Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A. 2016;104(4):1002–1016. doi:10.1002/jbm.a.3563826707893
  • Zhao X. Design of self-assembling surfactant-like peptides and their applications. Curr Opin Colloid In. 2009;14(5):340–348. doi:10.1016/j.cocis.2009.07.002
  • Ganguly S, Das NC. Water uptake kinetics and control release of agrochemical fertilizers from nanoclay-assisted semi-interpenetrating sodium acrylate-based hydrogel. Polym Plast Technol Eng. 2017;56(7):744–761. doi:10.1080/03602559.2016.1233268
  • Qi X, Wei W, Shen J, et al. Salecan polysaccharide-based hydrogels and their applications: a review. J Mater Chem B. 2019;7:2577–2587. doi:10.1039/C8TB03312A
  • Eskandari S, Guerin T, Toth I, et al. Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev. 2016;110-111:169–187. doi:10.1016/j.addr.2016.06.01327356149
  • Banerjee J, Radvar E, Azevedo HS. Self-assembling peptides and their application in tissue engineering and regenerative medicine In: Barbosa MAM, Martins CL, editors. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair. Cambridge: Woodhead Publishing; 2018:245–281.
  • Koutsopoulos S. Self-assembling peptides in biomedicine and bioengineering: tissue engineering, regenerative medicine, drug delivery, and biotechnology In: Koutsopoulos S, editor. Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Cambridge: Woodhead Publishing; 2018:387–408.
  • Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc Chem Res. 2017;50(4):714–722. doi:10.1021/acs.accounts.6b0055328191928
  • Sever M, Tansik G, Arslan E, et al. Self-assembled peptide nanostructures and their gels for regenerative medicine applications In: Azevedo HS, Silva RMP, editors. Self-assembling Biomaterials. Cambridge: Woodhead Publishing; 2018:455–473.
  • Wu X, He L, Li W, et al. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater. 2017;4(1):21–30. doi:10.1093/rb/rbw03428149526
  • Wang X, Wang J, Guo L, et al. Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. Nanomed-Nanotechnol. 2016;12(7):2115–2125. doi:10.1016/j.nano.2016.05.021
  • Krukiewicz K, Zak JK. Biomaterial-based regional chemotherapy: local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater Sci Eng C Mater Biol Appl. 2016;62(3):927–942. doi:10.1016/j.msec.2016.01.06326952500
  • Zhang J, Ellsworth K, Ma PX. Hydrophobic pharmaceuticals mediated self-assembly of beta-cyclodextrin containing hydrophilic copolymers: novel chemical responsive nano-vehicles for drug delivery. J Controlled Release. 2010;145(2):116–123. doi:10.1016/j.jconrel.2010.04.019
  • Qi X, Wei W, Li J, et al. Fabrication and characterization of a novel anticancer drug delivery system: salecan/poly (methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater Sci Eng. 2015;1(12):1287–1299. doi:10.1021/acsbiomaterials.5b00346
  • Zhou J, O’Keeffe M, Xu B, et al. Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and anti-inflammatory drug delivery. Tetrahedron. 2016;72(40):6078–6083. doi:10.1016/j.tet.2016.07.05728216796
  • Fung SY, Yang H, Bhola PT, et al. Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine: complexation, release and in vitro delivery. Adv Funct Mater. 2009;19(1):74–83. doi:10.1002/adfm.200800860
  • Lu Y, Zhao X. Fluorescence studies on a designed peptide of REIP as a potential hydrophobic drug carrier. Int J Pept Res Ther. 2011;17:81–86. doi:10.1007/s10989-011-9245-0
  • Li F, Wang J, Tang F, et al. Fluorescence studies on a designed self-assembling peptide of RAD16-II as a potential carrier for hydrophobic drug. J Nanosci Nanotechno. 2009;9(2):1611–1614. doi:10.1166/jnn.2009.C214
  • Zhou Q, Lin J, Wang J, et al. A designed amphiphilic peptide containing the silk fibroin motif as a potential carrier of hydrophobic drugs. Prog Nat Sci-Mater. 2009;19(11):1529–1536. doi:10.1016/j.pnsc.2009.04.010
  • Ganguly S, Das NC. Synthesis of a novel pH responsive phyllosilicate loaded polymeric hydrogel based on poly (acrylic acid-co-N-vinylpyrrolidone) and polyethylene glycol for drug delivery: modelling and kinetics study for the sustained release of an antibiotic drug. RSC Adv. 2015;5(24):18312–18327. doi:10.1039/C4RA16119J
  • Qi X, Wei W, Li J, et al. Salecan-based pH-sensitive hydrogels for insulin delivery. Mol Pharm. 2017;14(2):431–440. doi:10.1021/acs.molpharmaceut.6b0087528055215
  • Ganguly S, Maity T, Mondal S, Das P, Das NC. Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int J Biol Macromol. 2017;95:185–198. doi:10.1016/j.ijbiomac.2016.11.05527865957
  • Qi X, Yuan Y, Zhang J, et al. Oral administration of salecan-based hydrogels for controlled insulin delivery. J Agric Food Chem. 2018;66(40):10479–10489. doi:10.1021/acs.jafc.8b0287930240201
  • Mei L, Xie Y, Huang Y, et al. Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater. 2018;67:99–110. doi:10.1016/j.actbio.2017.11.05729225151
  • Ganguly S, Ray D, Das P, et al. Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason Sonochem. 2018;42:212–227. doi:10.1016/j.ultsonch.2017.11.02829429663
  • Montes A, Wehner L, Pereyra C, et al. Mangiferin nanoparticles precipitation by supercritical antisolvent process. J Supercrit Fluid. 2016;112:44–50. doi:10.1016/j.supflu.2016.02.008
  • Carvalho AC, Guedes MM, Souza AL, et al. Gastroprotective effect of mangiferin, a xanthonoid from Mangifera indica, against gastric injury induced by ethanol and indomethacin in rodents. Planta Med. 2007;73(13):1372–1376. doi:10.1055/s-2007-99023117918041
  • Malherbe CJ, Willenburg E, de Beer D, et al. Iriflophenone-3-C-glucoside from Cyclopia genistoides: isolation and quantitative comparison of antioxidant capacity with mangiferin and isomangiferin using on-line HPLC antioxidant assays. J Chromatogr B. 2014;951–952(1):164–171. doi:10.1016/j.jchromb.2014.01.038
  • He L, Peng X, Zhu J, et al. Mangiferin attenuates sepsis-induced acute kidney injury via antioxidant and anti-inflammatory effects. Am J Nephrol. 2014;40(5):441–450. doi:10.1159/00036922025427663
  • Rajendran P, Jayakumar T, Nishigaki I, et al. Immunomodulatory effect of mangiferin in experimental animals with benzo (a) pyrene-induced lung carcinogenesis. Int J Biomed Sci. 2013;9(2):68–74.23847456
  • Mahali SK, Manna SK. Beta-D-glucoside protects against advanced glycation end products (AGEs)-mediated diabetic responses by suppressing ERK and inducing PPAR gamma DNA binding. Biochem Pharmacol. 2012;84(12):1681–1690. doi:10.1016/j.bcp.2012.09.03323058985
  • Song J, Li Y, Song J, et al. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells. BBA-Mol Basis Dis. 2017;1863(7):1829–1839. doi:10.1016/j.bbadis.2017.05.001
  • Liu Y, Xu F, Zeng X, et al. Application of a liquid chromatography/tandem mass spectrometry method to pharmacokinetic study of mangiferin in rats. J Chromatogr B. 2010;878(32):3345–3350. doi:10.1016/j.jchromb.2010.10.014
  • Souza JRRD, Feitosa JPA, Ricardo NMPS, et al. Spray-drying encapsulation of mangiferin using natural polymers. Food Hydrocolloid. 2013;33(1):10–18. doi:10.1016/j.foodhyd.2013.02.017
  • Ganguly S, Poushali D, Prasanna MP, et al. Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physico-mechanical and electrical evaluations. J Phys Chem B. 2018;122(29):7201–7218. doi:10.1021/acs.jpcb.8b0291929969271
  • Ganguly S, Das NC. Rheological properties of polymer–carbon composites In: Rahaman M, Khastgir D, Aldalbahi AK, editors. Carbon-Containing Polymer Composites. Singapore: Springer; 2019:271–294.
  • Tang F, Zhao X. Interaction between a self-assembling peptide and hydrophobic compounds. Journal of biomaterials science. J Biomat Sci-Polym E. 2010;21(5):677–690. doi:10.1163/156856209X434683
  • Fung SY, Yang H, Chen P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf B Biointerfaces. 2007;55(2):00–211. doi:10.1016/j.colsurfb.2006.12.002
  • Meng Q, Yao S, Wang X, et al. RADA16: a self-assembly peptide hydrogel for the application in tissue regeneration. J Biomate Tiss Eng. 2014;4(12):1019–1029. doi:10.1166/jbt.2014.1246
  • Majumder P, Baxa U, Walsh STR, et al. Design of a multicompartment hydrogel that facilitates time-resolved delivery of combination therapy and synergized killing of glioblastoma. Angew Chem Int Ed Engl. 2018;57(46):15040–15044. doi:10.1002/anie.20180648330240496
  • Sun JEP, Stewart B, Litan A, et al. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel. Biomater Sci. 2016;4(5):839–848. doi:10.1039/c5bm00538h26906463
  • Ganguly S, Das NC. Synthesis of mussel inspired polydopamine coated halloysite nanotubes based semi-IPN: an approach to fine tuning in drug release and mechanical toughening. Macromol Symp. 2018;382(1):1800076. doi:10.1002/masy.201800076