250
Views
34
CrossRef citations to date
0
Altmetric
Original Research

High-affinity carboxyl-graphene oxide-based SPR aptasensor for the detection of hCG protein in clinical serum samples

, &
Pages 4833-4847 | Published online: 03 Jul 2019

References

  • Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–460.17653188
  • Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–145. doi:10.1021/cr900070d19610631
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi:10.1126/science.306.5698.956a15499015
  • Zhu SE, Yuan S, Janssen GCAM. Optical transmittance of multilayer graphene. Europhys Lett. 2014;108:17007. doi:10.1209/0295-5075/108/17007
  • Chiu NF, Huang TY. Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors. Sens Actuators B Chem. 2014;197:35–42. doi:10.1016/j.snb.2014.02.033
  • Chung C, Kim YK, Shin D, et al. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46:2211–2224. doi:10.1021/ar300159f23480658
  • Sanchez VC, Jachak A, Hurt RH, et al. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25:15–34. doi:10.1021/tx200339h21954945
  • Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–3694. doi:10.1021/nn300989g22512399
  • Johari P, Shenoy VB. Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano. 2011;5:7640–7647. doi:10.1021/nn202666w21875075
  • Chiu NF, Yang CD. Real-time and stepwise deoxidization processes to tune the photoluminescence properties of graphene oxide using EC-SPR spectroscopy. RSC Adv. 2018;8:11557–11565. doi:10.1039/C7RA13594G
  • Stebunov YV, Aftenieva OA, Arsenin AV, Volkov VS. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer. ACS Appl Mater Interfaces. 2015;7:21727–21734. doi:10.1021/acsami.5b0442726358000
  • Zhang H, Sun Y, Gao S, et al. A novel graphene oxide‐based surface plasmon resonance biosensor for immunoassay. Small. 2013;9:2537–2540. doi:10.1002/smll.v9.1523436747
  • Chiu NF, Huang TY, Lai HC, et al. Graphene oxide-based SPR biosensor chip for immunoassay applications. Nanoscale Res Lett. 2014;9:445. doi:10.1186/1556-276X-9-44525232298
  • Chiu NF, Kuo CT, Lin TL, et al. Ultra-high sensitivity of the non-immunological affinity of graphene oxide-peptide-based surface plasmon resonance biosensors to detect human chorionic gonadotropin. Biosens Bioelectron. 2017;94:351–357. doi:10.1016/j.bios.2017.03.00828319902
  • Chiu NF, Fan SY, Yang CD, et al. Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection. Biosens Bioelectron. 2017;89:370–376. doi:10.1016/j.bios.2016.06.07327396822
  • Singh M, Holzinger M, Tabrizian M, et al. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J Am Chem Soc. 2015;137:2800−2803. doi:10.1021/ja511512m25679322
  • Zagorodko O, Spadavecchia J, Serrano AY, et al. Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal Chem. 2014;86:11211–11216. doi:10.1021/ac502705n25341125
  • Alwahib AA, Sadrolhosseini AR, An’amt MN, et al. Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance. IEEE Photon J. 2016;8:1−9. doi:10.1109/JPHOT.2016.2577592
  • Chiu NF, Yang CD, Chen CC, et al. Stepwise control of reduction of graphene oxide and quantitative real-time evaluation of residual oxygen content using EC-SPR for a label-free electrochemical immunosensor. Sens Actuators B Chem. 2018;258:981–990. doi:10.1016/j.snb.2017.11.187
  • Chiu NF, Chen CC, Yang CD, et al. Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res Lett. 2018;13:152–162. doi:10.1186/s11671-018-2565-729767347
  • Chiu NF, Lin TL. Affinity capture surface carboxyl-functionalized MoS2 sheets to enhance the sensitivity of surface plasmon resonance immunosensors. Talanta. 2018;185:174–181. doi:10.1016/j.talanta.2018.03.07329759186
  • Lu YF, Lo ST, Lin JC, et al. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen Impurities on carrier transport. ACS Nano. 2013;7:6522–6532. doi:10.1021/nn305697q23879622
  • Teng CY, Yeh TF, Lin KI, et al. Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. J Mater Chem C. 2015;3:4553–4562. doi:10.1039/C5TC00492F
  • Zhang Y, Yuan S, Zhao Y, et al. Synthesis of novel yttrium-doped graphene oxide nanocomposite for dye removal. J Mater Chem A. 2014;2:7897–7903. doi:10.1039/C4TA01057D
  • Wang Y, Shao Y, Matson DW, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano. 2010;4:1790–1798. doi:10.1021/nn100315s20373745
  • Carnazza S, Foti C, Gioffre G, et al. Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens Bioelectron. 2008;23:1137–1144. doi:10.1016/j.bios.2007.11.00118068970
  • Yao F, Zhang R, Tian H, et al. Studies on the interactions of copper and zinc ions with β-amyloid peptides by a surface plasmon resonance biosensor. Int J Mol Sci. 2012;13:11832–11843. doi:10.3390/ijms13091183223109885
  • Chen H, Jia S, Zhang J, et al. Sensitive detection of copper(II) ions based on the conformational change of peptides by surface plasmon resonance spectroscopy. Anal Methods. 2015;7:8942–8946. doi:10.1039/C5AY02047F
  • Etayash H, Jiang K, Azmi S, et al. Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci Rep. 2015;5:13967. doi:10.1038/srep1396726434765
  • Dudak FC, Boyaci IH. Peptide-based surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B. Food Anal Method. 2014;7:506–511. doi:10.1007/s12161-013-9739-9
  • Tadepalli S, Kuang Z, Jiang Q, et al. Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Sci Rep. 2015;5:16206. doi:10.1038/srep1620626552720
  • Lim SK, Chen P, Lee FL, et al. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (Endotoxin) detection. Anal Chem. 2015;87:9408–9412. doi:10.1021/acs.analchem.5b0227026303386
  • Liang P, Li Q, Wu Z, et al. Graphene oxide-peptide nanoassembly as a general approach for monitoring the activity of histone deacetylases. Analyst. 2016;141:3989–3992. doi:10.1039/C6AN00902F27194207
  • Kanchanapally R, Nellore BPV, Sinha SS, et al. Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv. 2015;5:18881–18887. doi:10.1039/C4RA14244F26294958
  • Guo Y, Xu H, Li Y, et al. Hyaluronic acid and Arg-Gly-Asp peptide modified graphene oxide with dual receptor-targeting function for cancer therapy. J Biomater Appl. 2017;32:54–65. doi:10.1177/088532821770863828554233
  • Murray H, Baakdah H, Bardell T, et al. Diagnosis and treatment of ectopic pregnancy. CMAJ. 2005;173:905–912. doi:10.1503/cmaj.05022216217116
  • Devaseelan P, Fogarty PP, Regan L. Human chorionic gonadotrophin for threatened miscarriage. Cochrane Database Syst Rev. 2010;5:CD007422.
  • Haddad B, Abirached F, Louis-Sylvestre C, et al. Predictive value of early human chorionic gonadotrophin serum profiles for fetal growth retardation. Hum Reprod. 1999;14:2872–2875. doi:10.1093/humrep/14.7.172210548639
  • Hoshi S, Suzuki KI, Ishidoya S, et al. Significance of simultaneous determination of serum human chorionic gonadotropin (hCG) and hCG‐β in testicular tumor patients. Int J Urol. 2000;7:218–223. doi:10.1046/j.1442-2042.2000.00181.x10843453
  • Ding X, Yang KL. Antibody-free detection of human chorionic gonadotropin by use of liquid crystals. Anal Chem. 2013;85:10710−10716. doi:10.1021/ac400732n24147645
  • Chang CC, Chen CP, Lee CH, et al. Colorimetric detection of human chorionic gonadotropin using catalytic gold nanoparticles and a peptide aptamer. Chem Commun. 2014;50:14443–14446. doi:10.1039/C4CC06366J
  • Xia N, Chen Z, Liu Y, et al. Peptide aptamer-based biosensor for the detection of human chorionic gonadotropin by converting silver nanoparticles-based colorimetric assay into sensitive electrochemical analysis. Sens Actuators B Chem. 2017;243:784–791. doi:10.1016/j.snb.2016.12.066
  • Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203−212. doi:10.1007/s12274-008-8021-820216934
  • Chiu NF, Lin TL, Kuo CT. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sens Actuators B Chem. 2018;265:264–272.
  • Compton OC, Jain B, Dikin DA, et al. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano. 2011;5:4380–4391. doi:10.1021/nn202666w21473647
  • Xue T, Cui X, Chen J, et al. A switch of the oxidation state of graphene oxide on a surface plasmon resonance chip. ACS Appl Mater Inter. 2013;5:2096–2103. doi:10.1021/am400481t
  • Okhrimenko DV, Nissenbaum J, Andersson MP, et al. Energies of the adsorption of functional groups to calcium carbonate polymorphs: the importance of −OH and −COOH groups. Langmuir. 2013;29:11062–11073. doi:10.1021/la402305x23919655
  • Sousa M, Martins CHZ, Franqui LS, et al. Covalent functionalization of graphene oxide with D-mannose: evaluating the hemolytic effect and protein corona formation. J Mater Chem B. 2018;6:2803–2812. doi:10.1039/C7TB02997G
  • Stevens JS, Luca AC, Pelendritis M. Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf Interface Anal. 2013;45:1238–1246. doi:10.1002/sia.5261
  • Brownson DAC, Kampouris DK, Banks CE. Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev. 2012;41:6944–6976. doi:10.1039/c2cs35105f22850696
  • Karuppiah C, Cheemalapati S, Chen SM, et al. Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics. 2015;21:231–238. doi:10.1007/s11581-014-1161-9
  • Imani R, Emami SH, Faghihi S. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. J Nanopart Res. 2015;17:88–102. doi:10.1007/s11051-015-2888-6
  • Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light Sci Appl. 2018;7:67–77. doi:10.1038/s41377-018-0066-130275947
  • Mohanty G, Sahoo BK. III-V nitrides and performance of graphene on copper plasmonic biosensor. Superlattice Microst. 2016;93:226–233. doi:10.1016/j.spmi.2016.03.040
  • Wu C, Rehman F, Li J, et al. Real-time evaluation of liver cancer cells by an in situ surface plasmon resonance and electrochemical study. ACS Appl Mater Inter. 2015;7:24848–24854. doi:10.1021/acsami.5b08066
  • Wang S, Boussaad S, Wang S, et al. High-sensitivity stark spectroscopy obtained by surface plasmon resonance measurement. Anal Chem. 2000;72:4003–4008. doi:10.1021/ac000504f10994957
  • Zagorodko O, Bouckaert J, Dumych T. Surface plasmon resonance (SPR) for the evaluation of shear-force-dependent bacterial adhesion. Biosensors. 2015;5:276–287. doi:10.3390/bios502027626018780
  • Tassa C, Duffner JL, Lewis TA. Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. Bioconjug Chem. 2010;21:14–19. doi:10.1021/bc900438a20028085
  • Tang Y, Mernaugh R, Zeng X. Nonregeneration protocol for surface plasmon resonance: study of high-affinity interaction with high-density biosensors. Anal Chem. 2006;78:1841–1848. doi:10.1021/ac051868g16536419