159
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Biological Activity Of miRNA-27a Using Peptide-based Drug Delivery Systems

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7795-7808 | Published online: 25 Sep 2019

References

  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–974. doi:10.1016/j.jconrel.2013.09.01524075926
  • Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–521. doi:doi:10.1038/nrendo.2013.8623629540
  • Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15(5):563–568. doi:10.1016/j.gde.2005.08.00516099643
  • Meade BR, Dowdy SF. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev. 2008;60(4–5):530–536. doi:10.1016/j.addr.2007.10.00418155315
  • Laufer SD, Detzer A, Sczakiel G, Restle T. RNA Technologies and Their Applications. First ed. Springer-Verlag; 2010. doi:10.1007/978-3-642-12168-5
  • MacFarlane L, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–561. doi:10.2174/13892021079317589521532838
  • Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HDC. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J Pharm Sci. 2012;101(11):4046–4066. doi:10.1002/jps.2330022927140
  • Firoozabadi AD, Shojaeii S, Hadinedoushan H. Physiological and pathological roles for MicroRNAs: implications for immunity complications. Int J Med Lab. 2014;1(1):61–75.
  • Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93(1):98–104. doi:10.1038/clpt.2012.19223212103
  • Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2014;13(4):239–250. doi:10.1038/nrm3313
  • Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S. MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal. 2014;26(9):1888–1896. doi:10.1016/j.cellsig.2014.05.00624844591
  • Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12(1):1–16. doi:10.1186/s12263-017-0577-z28127411
  • Klaus S. Adipose tissue as a regulator of energy balance. Curr Drug Targets. 2004;5:241–250.15058310
  • Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 2014;63(2):272–282. doi:10.1016/j.metabol.2013.10.00424238035
  • Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. Febs J. 2009;276(8):2348–2358. doi:10.1111/j.1742-4658.2009.06967.x19348006
  • Kim SY, Kim AY, Lee HW, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Commun. 2010;392(3):323–328. doi:10.1016/j.bbrc.2010.01.01220060380
  • Karbiener M, Fischer C, Nowitsch S, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun. 2009;390(2):247–251. doi:10.1016/j.bbrc.2009.09.09819800867
  • Dorrani M, Garbuzenko OB, Minko T, Michniak-Kohn B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J Control Release. 2016;228:150–158. doi:10.1016/j.jconrel.2016.03.01026965957
  • Kim HK, Davaa E, Myung CS, Park JS. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm. 2010;392(1–2):141–147. doi:10.1016/j.ijpharm.2010.03.04720347025
  • Shim G, Kim MG, Park JY, Oh YK. Application of cationic liposomes for delivery of nucleic acids. Asian J Pharm Sci. 2013;8(2):72–80. doi:10.1016/j.ajps.2013.07.009
  • Ghatak S, Li J, Chan YC, et al. AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing. Nanomed Nanotechnol Biol Med. 2016;12(7):1827–1831. doi:10.1016/j.nano.2016.03.004
  • McLendon JM, Joshi SR, Sparks J, et al. Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J Control Release. 2015;210:67–75. doi:10.1016/j.jconrel.2015.05.26125979327
  • Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of avidin, neutravidin, and streptavidin as nanocarriers for efficient siRNA delivery. Mol Pharm. 2017;14(5):1517–1527. doi:10.1021/acs.molpharmaceut.6b0093328026957
  • Choi KM, Choi SH, Jeon H, Kim IS, Ahn HJ. Chimeric capsid protein as a nanocarrier for siRNA delivery: stability and cellular uptake of encapsulated siRNA. ACS Nano. 2011;5(11):8690–8699. doi:10.1021/nn202597c21985460
  • Zhang X, Li Y, Chen YE, Chen J, Ma PX. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun. 2016;7:1–15. doi:10.1038/ncomms10376
  • Chen M, Gao S, Dong M, et al. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano. 2012;6(6):4835–4844. doi:10.1021/nn300106t22621383
  • You X, Gu Z, Huang J, Kang Y, Chu CC, Wu J. Arginine-based poly(ester amide) nanoparticle platform: from structure–property relationship to nucleic acid delivery. Acta Biomater. 2018;74:180–191. doi:10.1016/j.actbio.2018.05.04029803783
  • Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta Rev Cancer. 2011;1816(2):232–246. doi:10.1016/j.bbcan.2011.07.006
  • Majumder P, Bhunia S, Chaudhuri A. A lipid-based cell penetrating nano-assembly for RNAi-mediated anti-angiogenic cancer therapy. Chem Commun. 2018;54(12):1489–1492. doi:10.1039/c7cc08517f
  • Suh JS, Lee JY, Choi YS, Chong PC, Park YJ. Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials. 2013;34(17):4347–4359. doi:10.1016/j.biomaterials.2013.02.03923478036
  • Zhao Z, Li Y, Jain A, et al. Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells. Nanomed Nanotechnol Biol Med. 2018;14(1):51–61. doi:10.1016/j.nano.2017.08.017
  • Shukla RS, Jain A, Zhao Z, Cheng K. Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex. Nanomed Nanotechnol Biol Med. 2016;12(5):1323–1334. doi:10.1016/j.nano.2016.02.003
  • Choi YS, Lee JY, Suh JS, et al. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials. 2010;31(6):1429–1443. doi:10.1016/j.biomaterials.2009.11.00119954842
  • Scheicher B, Schachner-Nedherer AL, Zimmer A. Protamine-oligonucleotide-nanoparticles: recent advances in drug delivery and drug targeting. Eur J Pharm Sci. 2015;75:54–59. doi:10.1016/j.ejps.2015.04.00925896372
  • Ndodo ND. Nanoparticle (MPG) -mediated delivery of small RNAs into human mesenchymal stem cells. African J Biotechnol. 2015;14(37):2703–2714. doi:10.5897/AJB2015.14417
  • Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–2724. doi:10.1093/nar/gkg38512771197
  • Deshayes S, Gerbal-Chaloin S, Morris MC, et al. On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochim Biophys Acta Biomembr. 2004;1667(2):141–147. doi:10.1016/j.bbamem.2004.09.010
  • Morris MC, Deshayes S, Heitz F, Divita G. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell. 2008;100(4):201–217. doi:10.1042/BC2007011618341479
  • Crombez L, Charnet A, Morris MC, Aldrian-Herrada G, Heitz F, Divita G. A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans. 2007;35(1):44–46. doi:10.1042/BST035004417233597
  • Gerbal-Chaloin S, Gondeau C, Aldrian-Herrada G, Heitz F, Gauthier-Rouvière C, Divita G. First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biol Cell. 2007;99(4):223–238. doi:10.1042/BC2006012317233629
  • Schachner-Nedherer A-L, Werzer O, Zimmer A. A protocol to characterize peptide-based drug delivery systems for miRNAs. ACS Omega. 2019;4(4):7014–7022. doi:10.1021/acsomega.8b0356231459813
  • Sigma-Aldrich. N-TER Nanoparticle siRNA Transfection System - Product Information. 1–4. Available from: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/n2913bul.pdf. Accessed September 18, 2019.
  • Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red o. Histochem Cell Biol. 1992;97(6):493–497. doi:10.1007/BF00316069
  • Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys. 2012;10(1):181–188. doi:10.2478/s11534-011-0096-2
  • Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4(4):263–273. doi:10.1016/j.cmet.2006.07.00117011499
  • Kawada T, Takahashi N, Fushiki T. Biochemical and physiological characteristics of fat cell. J Nutr Sci Vitaminol. 2001;47:1–12. doi:10.3177/jnsv.47.111349884
  • Drechsler S, Andrä J. Online monitoring of metabolism and morphology of peptide-treated neuroblastoma cancer cells and keratinocytes. J Bioenerg Biomembr. 2011;43(3):275–285. doi:10.1007/s10863-011-9350-y21643697
  • Orr BG, Baker JR, Leroueil PR, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem. 2006;17(3):728–734. doi:10.1021/bc060077y16704211
  • Saar K, Lindgren M, Hansen M, et al. Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem. 2005;345(1):55–65. doi:10.1016/j.ab.2005.07.03316137634
  • Schubert D, Behl C, Lesley R, et al. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci USA. 1995;92(6):1989–1993. doi:10.1073/pnas.92.6.19897892213
  • Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des. 2012;80(6):787–809. doi:10.1111/cbdd.1205222974319
  • Siedlecka-Kroplewska K, Kogut-Wierzbicka M, Mucha P, Wierzbicki PM, Rekowski P, Ruczynski J. Cell-penetrating peptides as a promising tool for delivery of various molecules into the cells. Folia Histochem Cytobiol. 2014;52(4):257–269. doi:10.5603/fhc.a2014.003425530464
  • Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci. 2014;20(10):760–784. doi:10.1002/psc.267225112216
  • Creusot N, Gruppen H, van Koningsveld GA, de Kruif CG, Voragen AGJ. Peptide-peptide and protein-peptide interactions in mixtures of whey protein isolate and whey protein isolate hydrolysates. Int Dairy J. 2006;16(8):840–849. doi:10.1016/j.idairyj.2005.06.010
  • Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010;94(1):1–18. doi:10.1002/bip.2132820091874
  • Tanabe Y. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPAR 2. J Cell Sci. 2004;117(16):3605–3614. doi:10.1242/jcs.0120715252128
  • Shoham N, Gefen A. Mechanotransduction in adipocytes. J Biomech. 2012;45(1):1–8. doi:10.1016/j.jbiomech.2011.10.02322112919
  • Reed BC, Lane MD. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proc Natl Acad Sci. 1980;77(1):285–289. doi:10.1073/pnas.77.1.2856928620
  • Crooke T. Glucocorticoid pread ipocytes regulation of fl-Adrenergic receptors in 3T3-L1. Mol Pharmacol. 1987;31(4):337–384.
  • Zhang XH, Zhang YY, Sun HY, Jin MW, Li GR. Functional ion channels and cell proliferation in 3T3-L1 preadipocytes. J Cell Physiol. 2012;227(5):1972–1979. doi:10.1002/jcp.2292521732368
  • Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9:51–63. doi:10.2147/IJN.S2659224872703
  • Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology. 2014;12(1):1–11. doi:10.1186/1477-3155-12-524411017
  • Heitz F, Morris MC, Divita G. Themed section : vector design and drug delivery review Twenty years of cell-penetrating peptides : from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157:195–206. doi:10.1111/j.1476-5381.2008.00057.x19309362
  • Phillips DC, York RL, Mermut O, McCrea KR, Ward RS, Somorjai GA. Side chain, chain length, and sequence effects on amphiphilic peptide adsorption at hydrophobic and hydrophilic surfaces studied by sum-frequency generation vibrational spectroscopy and quartz crystal microbalance. J Phys Chem C. 2007;111(1):255–261. doi:10.1021/jp0645263
  • Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994. doi:10.1021/nn405726924559246
  • Deshayes S, Morris MC, Divita G, Heitz F. Cellular and molecular life sciences cell-penetrating peptides : tools for intracellular delivery of therapeutics. Cell Mol Life Sci. 2005;62:1839–1849. doi:10.1007/s00018-005-5109-015968462
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337. doi:10.1002/smll.20110000121520409
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12–21. doi:10.1002/smll.20090115819844908