301
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Nanodelivery and anticancer effect of a limonoid, nimbolide, in breast and pancreatic cancer cells

, & ORCID Icon
Pages 8095-8104 | Published online: 07 Oct 2019

References

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.2010721296855
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.01321376230
  • GLOBOCAN. Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012; 2012 Available from: http://globocan.iarc.fr. Accessed 95, 2019.
  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–2917. doi:10.1002/ijc.2551621351269
  • Hasima N, Aggarwal BB. Cancer-linked targets modulated by curcumin. Int J Biochem Molec Biol. 2012;3(4):328–351.23301199
  • Gupta SC, Prasad S, Sethumadhavan DR, Nair MS, Mo YY, Aggarwal BB. Nimbolide, a limonoidtriterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment. Clin Cancer Res. 2013;19(16):4465–4476. doi:10.1158/1078-0432.CCR-13-008023766363
  • Bodduluru LN, Kasala ER, Thota N, Barua CC, Sistla R. Chemopreventive and therapeutic effects of nimbolide in cancer: the underlying mechanisms. Toxicol In Vitro. 2014;28(5):1026–1035. doi:10.1016/j.tiv.2014.04.01124759803
  • Anitha G, Josepha LRJ, Narasimhan S, Anand SK, Rajan SS. Nimbolide and isonimbolide. J Asian Nat Prod Res. 2006;8(5):445–449. doi:10.1080/1028602050017326716864461
  • Sastry BS, Babu KS, Babu TH, et al. Synthesis and biological activity of amide derivatives of nimbolide. Bioorg Med Chem Lett. 2006;16(16):4391–4394. doi:10.1016/j.bmcl.2006.05.10516793266
  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci. 2002;82(11):1336–1345.
  • Sarkar P, Acharyya S, Banerjee A, et al. Intracellular, biofilm-inhibitory and membrane-damaging activities of nimbolide isolated from Azadirachta indica A. Juss (Meliaceae) against meticillin-resistant Staphylococcus aureus. J Med Microbiol. 2016;65(10):1205–1214. doi:10.1099/jmm.0.00034327553840
  • Udeinya IJ, Mbah AU, Chijioke CP, Shu EN. An antimalerial extract from neem leaves is antiretroviral. Trans R Soc Trop Med Hyg. 2004;98(7):435–437. doi:10.1016/j.trstmh.2003.10.01615138081
  • Suresh G, Gopalakrishnan G, Wesley SD, Singh PN, Malathi R, Rajan S. Insect antifeedant activity of tetranortriterpenoids from the rutales. A perusal of structural relations. J Agric Food Chem. 2002;50(16):4484–4490. doi:10.1021/jf025534t12137465
  • Rochanakij S, Thebtaranonth Y, Yenjai C, Yuthavong Y. Nimbolide, a constituent of Azadirachta indica, inhibits Plasmodium falciparum in culture. Southeast Asian J Trop Med Public Health. 1985;16(1):66–72.3895455
  • Cohen E, Quistad GB, Jefferies PR, Casida JE. Nimbolide is the principal cytotoxic component of neem seed insecticide preparations. Pest Manag Sci. 1996;48:135–140. doi:10.1002/(SICI)1096-9063(199610)48:2<135::AID-PS451>3.0.CO;2-J
  • Priyadarsini RV, Manikandan P, Kumar GH, Nagini S. The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis. Free Radic Res. 2009;43(5):492–504. doi:10.1080/1071576090287063719391054
  • Seo JY, Lee C, Hwang SW, Chun J, Im JP, Kim JS. Nimbolide inhibits nuclear factor-КB pathway in intestinal epithelial cells and macrophages and alleviates experimental colitis in mice. Phytother Res. 2016;30(10):1605–1614. doi:10.1002/ptr.v30.10
  • Wang L, Phan DDK, Zhang J, et al. Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development. Oncotarget. 2016;7(28):44790–44802.27027349
  • Elumalai P, Arunakaran J. Review on molecular and chemopreventive potential of nimbolidein cancer. Genomics Inform. 2014;12(4):156–164. doi:10.5808/GI.2014.12.4.15625705153
  • Singh PR, Priya ES, Balakrishnan S, et al. Nimbolide inhibits androgen independent prostate cancer cells survival and proliferation by modulating multiple pro-survival signaling pathways. Biomed Pharmacother. 2016;84:1623–1634. doi:10.1016/j.biopha.2016.10.07627889231
  • Singh PR, Priya ES, Balakrishnan S, et al. Inhibition of cell survival and proliferation by nimbolide in human androgen-independent prostate cancer (PC-3) cells: involvement of the PI3K/Akt pathway. Mol Cell Biochem. 2017;427(1–2):69–79. doi:10.1007/s11010-016-2898-428025797
  • Subramani R, Gonzalez E, Arumugam A, et al. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelialtomesenchymal transition. Sci Rep. 2016;6:19819. doi:10.1038/srep1981926804739
  • Gupta SC, Prasad S, Reuter S, et al. Modification of cysteine 179 of IkBa kinase by nimbolide leads to down-regulation of NF-kB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem. 2010;285(46):35406–35417. doi:10.1074/jbc.M110.16198420829362
  • Chitta K, Paulus A, Caulfield TR, et al. Nimbolide targets BCL2 and induces apoptosis in preclinical models of waldenstroms macroglobulinemia. Blood Cancer J. 2014;4:e260. doi:10.1038/bcj.2014.7425382610
  • Karkare S, Chhipa RR, Anderson J, et al. Direct inhibition of retinoblastoma phosphorylation by nimbolide causes cell-cycle arrest and suppresses glioblastoma growth. Clin Cancer Res. 2014;20(1):199–212. doi:10.1158/1078-0432.CCR-13-076224170547
  • Kumar GH, Priyadarsini RV, Vinothini G, Letchoumy PV, Nagini S. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis. Invest New Drugs. 2010;28(4):392–401. doi:10.1007/s10637-009-9263-319458912
  • Kushwaha SKS, Rastogi A, Rai AK, Singh S. Novel drug delivery system for anticancer drug: a review. Int J PharmTech Res. 2012;4(2):542–553.
  • Estanqueiro M, Amaral MH, Conceicao J, Lobo JMS. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631–648. doi:10.1016/j.colsurfb.2014.12.04125591851
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701. doi:10.1038/nrc195816900224
  • Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F. Polymeric nanomedicines for image-guided drug delivery and tumor targeted combination therapy. Nano Today. 2010;5(3):197–212. doi:10.1016/j.nantod.2010.05.001
  • Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endolysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. Faseb J. 2002;16(10):1217–1226. doi:10.1096/fj.02-0088com12153989
  • Gref R, Luck M, Quellec P, et al. Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18:301–313. doi:10.1016/S0927-7765(99)00156-310915952
  • Saxena V, Naguib Y, Hussain MD. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf B Biointerfaces. 2012;94:274–280. doi:10.1016/j.colsurfb.2012.02.00122377218
  • El-Hammadi MM, Delgado AV, Melguizo C, Prados JC, Arias JL. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm. 2017;516(1–2):61–70. doi:10.1016/j.ijpharm.2016.11.01227825867
  • Athanasiou KA, Niederauer GG, Agrawal C. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102. doi:10.1016/0142-9612(96)85754-18624401
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials. 2000;21(23):2475–2490. doi:10.1016/S0142-9612(00)00115-011055295
  • Bala I, Hariharan S, Ravi K. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21(5):387–422. doi:10.1615/CritRevTherDrugCarrierSyst.v21.i5.2015719481
  • Bilati U, Allemann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75. doi:10.1016/j.ejps.2004.09.01115626579
  • Song X, Zhao Y, Wu W, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm. 2007;350(1–2):320–329. doi:10.1016/j.ijpharm.2007.08.03417913411
  • Elumalai P, Mercy AB, Arunkamar R, et al. Nimbolide inhibits invasion and migration, and down-regulates uPAR chemokine gene expression, in two breast cancer cell lines. Cell Prolif. 2014;47(6):540–552. doi:10.1111/cpr.2014.47.issue-625377085
  • Elumalai P, Arunkumar R, Benson CS, Sharmila G, Arunakaran J. Nimbolide inhibits IGF-I-mediated PI3K/Akt and MAPK signalling in human breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct. 2014;32(5):476–484.24888707
  • Elumalai P, Gunadharini DN, Senthilkumar K, et al. Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicol Lett. 2012;215(2):131–142. doi:10.1016/j.toxlet.2012.10.00823089555
  • Song X, Zhao Y, Hou S, et al. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69(2):445–453. doi:10.1016/j.ejpb.2008.01.01318374554
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop J Pharm Res. 2013;12(2):265–273.
  • Patel J, Amrutiya P, Bhatt P, Javia A, Jain M, Misra A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul. 2018;35(2):204–217. doi:10.1080/02652048.2018.145356029542378
  • Kang BS, Choi JS, Lee SE, et al. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohyd Polym. 2017;159:39–47. doi:10.1016/j.carbpol.2016.12.009
  • Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670–19681.26770631
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–1915. doi:10.1021/nl900031y19344179
  • Galindo-Rodriguez S, Allemann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21(8):1428–1439. doi:10.1023/B:PHAM.0000036917.75634.be15359578
  • Yan F, Zhang C, Zheng Y, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine. 2010;6(1):170–178. doi:10.1016/j.nano.2009.05.00419447200
  • Pimple S, Manjappa AS, Ukawala M, Murthy RSR. PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: in vitro cell line study to ensure advantage of combination therapy. Cancer Nano. 2012;3(1–6):25–36. doi:10.1007/s12645-012-0027-y
  • Beirowski J, Inghelbrecht S, Arien A, Gieseler H. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution. J Pharm Sci. 2011;100(5):1958–1968. doi:10.1002/jps.2242521374626
  • Hirsjarvi S, Peltonen L, Hirvonen J. Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of poly(lactic acid) nanoparticles. AAPS PharmSciTech. 2009;10(2):488–494. doi:10.1208/s12249-009-9236-z19381823
  • Tang L, Yang X, Yin Q, et al. Investigating the optimal size of anticancer nanomedicine. PNAS. 2014;111(43):15344–15349. doi:10.1073/pnas.141149911125316794
  • Kamiya S, Kurita T, Miyagishima A, Itai S, Arakawa M. Physical properties of griseofulvin-lipid nanoparticles in suspension and their novel interaction mechanism with saccharide during freeze-drying. Eur J Pharm Biopharm. 2010;74(3):461–466. doi:10.1016/j.ejpb.2009.12.00420018239
  • Mu L, Feng SS. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effect of emulsifier and drug loading ratio. Pharm Res. 2003;20(11):1864–1872. doi:10.1023/B:PHAM.0000003387.15428.4214661934
  • Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2013;33(12):3494–3501. doi:10.1016/j.biomaterials.2012.01.036
  • Gõmez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331(2):153–159. doi:10.1016/j.ijpharm.2006.11.02817157461
  • Fojo T, Coley HM. The role of efflux pumps in drug-resistant metastatic breast cancer: new insights and treatment strategies. Clin Breast Cancer. 2007;7(10):749–756. doi:10.3816/CBC.2007.n.03518021475