85
Views
5
CrossRef citations to date
0
Altmetric
Review

Review of the Application of Nanovesicles and the Human Interstitial Fluid in Gastrointestinal Premalignant Lesion Detection, Diagnosis, Prognosis and Therapy

, &
Pages 9469-9482 | Published online: 02 Dec 2019

References

  • Rentien AL, Lévy M, Copie-Bergman C, et al. Long-term course of precancerous lesions arising in patients with gastric MALT lymphoma. Dig Liver Dis. 2018;50(2):181–188. doi:10.1016/j.dld.2017.10.01429102522
  • Li X, Li H, He X, et al. Spectrum- and time-resolved endogenous multiphoton signals reveal quantitative differentiation of premalignant and malignant gastric mucosa. Biomed Opt Express. 2018;9(2):453–471. doi:10.1364/BOE.9.00045329552386
  • Benias PC, Wells RG, Sackey-Aboagye B, et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep. 2018;8(1):4947. doi:10.1038/s41598-018-23062-629588511
  • Onsurathum S, Haonon O, Pinlaor P, et al. Proteomics detection of S100A6 in tumor tissue interstitial fluid and evaluation of its potential as a biomarker of cholangiocarcinoma. Tumour Biol. 2018;40(4):1010428318767195. doi:10.1177/101042831876719529629840
  • Zhu Q, Heon M, Zhao Z, et al. Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip. 2018;18(12):1690–1703. doi:10.1039/c8lc00246k29780982
  • Li P, Yao Q, Lü B, et al. Visible Light-induced supra-amphiphilic switch leads to transition from supramolecular nanosphere to nanovesicle activated by pillar[5]arene-based host-guest interaction. Macromol Rapid Commun. 2018;39(20):e1800133. doi:10.1002/marc.20180013329786904
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):E57. doi:10.3390/pharmaceutics1002005729783687
  • Sun B, Peng J, Wang S, et al. Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci. 2018;29(5):531–546. doi:10.1515/revneuro-2017-005929267178
  • Atay S, Wilkey DW, Milhem M, et al. Insights into the proteome of gastrointestinal stromal tumors-derived exosomes reveals new potential diagnostic biomarkers. Mol Cell Proteomics. 2018;17(3):495–515. doi:10.1074/mcp.RA117.00026729242380
  • Bhat A, Huan K, Cooks T, et al. Probing interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) using hyperspectral dark-field microscopy. Int J Mol Sci. 2018;19(4):E1014. doi:10.3390/ijms1904101429597298
  • Arenaccio C, Chiozzini C, Ferrantelli F, et al. Exosomes in therapy: engineering, pharmacokinetics and future applications. Curr Drug Targets. 2019;20(1):87–95. doi:10.2174/138945011966618052110040929779478
  • Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia. 2017;31(6):1259–1268. doi:10.1038/leu.2017.9128321122
  • Giusti I, Di Francesco M, Dolo V. Extracellular vesicles in glioblastoma: role in biological processes and in therapeutic applications. Curr Cancer Drug Targets. 2017;17(3):221–235. doi:10.2174/156800961666616081318295927528364
  • Zhang J, Hao N, Liu W, et al. In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery. Br J Cancer. 2017;117(11):1676–1684. doi:10.1038/bjc.2017.34429024941
  • Ludwig N, Whiteside TL. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 2018;22(5):409–417. doi:10.1080/14728222.2018.146414129634426
  • Lin LY, Yang L, Zeng Q, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer. 2018;17(1):84. doi:10.1186/s12943-018-0834-929690888
  • Wang J, Liu Y, Sun W, et al. Plasma exosomes as novel biomarker for the early diagnosis of gastric cancer. Cancer Biomark. 2018;21(4):805–812. doi:10.3233/CBM-17073829400660
  • McMullen JRW, Selleck M, Wall NR, et al. Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget. 2017;8(26):43481–43490. doi:10.18632/oncotarget.1648028415645
  • Zhang K, Du X, Yu K, et al. Application of novel targeting nanoparticles contrast agent combined with contrast-enhanced computed tomography during screening for early-phase gastric carcinoma. Exp Ther Med. 2018;15(1):47–54. doi:10.3892/etm.2017.538829387181
  • Feng ST, Li H, Luo Y, et al. Molecular targeted magnetic resonance imaging of human colorectal carcinoma (LoVo) cells using novel superparamagnetic iron oxide- loaded nanovesicles: in vitro and in vivo studies. Curr Cancer Drug Targets. 2016;16(6):551–560. doi:10.2174/156800961666616060312361627262319
  • Blanco VM, Latif T, Chu Z, et al. Imaging and therapy of pancreatic cancer with phosphatidylserine-targeted nanovesicles. Transl Oncol. 2015;8(3):196–203. doi:10.1016/j.tranon.2015.03.01126055177
  • Yan L, Dong X, Gao J, et al. A novel rapid quantitative method reveals stathmin-1 as a promising marker for esophageal squamous cell carcinoma. Cancer Med. 2018;7(5):1802–1813. doi:10.1002/cam4.144929577639
  • Wang Y, Zhang C, Zhang P, et al. Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma. Cancer Med. 2018;7(5):1670–1679. doi:10.1002/cam4.139029573235
  • Huang Z, Zhang L, Zhu D, et al. A novel serum microRNA signature to screen esophageal squamous cell carcinoma. Cancer Med. 2017;6(1):109–119. doi:10.1002/cam4.97328035762
  • Davis HW, Hussain N, Qi X. Detection of cancer cells using SapC-DOPS nanovesicles. Mol Cancer. 2016;15(1):33. doi:10.1186/s12943-016-0519-127160923
  • Ding J, Feng M, Wang F, et al. Targeting effect of PEGylated liposomes modified with the Arg-Gly-Asp sequence on gastric cancer. Oncol Rep. 2015;34(4):1825–1834. doi:10.3892/or.2015.414226238930
  • Hoshino I, Maruyama T, Fujito H, et al. Detection of peritoneal dissemination with near-infrared fluorescence laparoscopic imaging using a liposomal formulation of a synthesized indocyanine green liposomal derivative. Anticancer Res. 2015;35(3):1353–1359.25750285
  • Li S, Yao J, Xie M, et al. Exosomal miRNAs in hepatocellular carcinoma development and clinical responses. J Hematol Oncol. 2018;11(1):54. doi:10.1186/s13045-018-0579-329642941
  • Pan JH, Zhou H, Zhao XX, et al. Role of exosomes and exosomal microRNAs in hepatocellular carcinoma: potential in diagnosis and antitumour treatments (Review). Int J Mol Med. 2018;41(4):1809–1816. doi:10.3892/ijmm.2018.338329328436
  • Zhang H, Wang Y, Bai M, et al. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci. 2018;109(3):629–641. doi:10.1111/cas.1348829285843
  • George J, Yan IK, Patel T. Nanovesicle-mediated delivery of anticancer agents effectively induced cell death and regressed intrahepatic tumors in athymic mice. Lab Invest. 2018;98(7):895–910. doi:10.1038/s41374-018-0053-429748614
  • Borrelli DA, Yankson K, Shukla N, et al. Extracellular vesicle therapeutics for liver disease. J Control Release. 2018;273:86–98. doi:10.1016/j.jconrel.2018.01.02229373816
  • Thapa RK, Ku SK, Choi HG, et al. Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy. Nanoscale. 2018;10(4):1742–1749. doi:10.1039/c7nr07603g29308494
  • Sun ZP, Li AQ, Jia WH, et al. MicroRNA expression profiling in exosomes derived from gastric cancer stem-like cells. Oncotarget. 2017;8(55):93839–93855. doi:10.18632/oncotarget.2128829212193
  • Tokuhisa M, Ichikawa Y, Kosaka N, et al. Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One. 2015;10(7):e0130472. doi:10.1371/journal.pone.013047226208314
  • Matsumura T, Sugimachi K, Iinuma H, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113(2):275–281. doi:10.1038/bjc.2015.20126057451
  • Guo J, Fan KX, Xie LI, et al. Effect and prognostic significance of the KAI1 gene in human gastric carcinoma. Oncol Lett. 2015;10(4):2035–2042. doi:10.3892/ol.2015.360426622792
  • Zheng NG, Mo SJ, Li JP, et al. Anti-CSC effects in human esophageal squamous cell carcinomas and Eca109/9706 cells induced by nanoliposomal quercetin alone or combined with CD 133 antiserum. Asian Pac J Cancer Prev. 2014;15(20):8679–8684. doi:10.7314/apjcp.2014.15.20.867925374189
  • Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522–534. doi:10.1038/mt.2013.19023939022
  • Joshi N, Saha R, Shanmugam T, et al. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules. 2013;14(7):2272–2282. doi:10.1021/bm400406x23721348
  • EL Andaloussi S, Andaloussi S, Mäger I, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. doi:10.1038/nrd397823584393
  • Fujie S, Matsubayashi H, Ishiwatari H, et al. Intraductal tubulopapillary epithelial proliferation associated with type 1 autoimmune pancreatitis. J Gastrointestin Liver Dis. 2018;27(1):83–87. doi:10.15403/jgld.2014.1121.271.fuj29557419
  • Liang L, Fanzong L, Peixi Z, et al. Plexiform angiomyxoid myofibroblastic tumor of the stomach: a case report. Diagn Cytopathol. 2017;45(1):55–58. doi:10.1002/dc.2357227561459
  • Reichel D, Curtis LT, Ehlman E, et al. Development of halofluorochromic polymer nanoassemblies for the potential detection of liver metastatic colorectal cancer tumors using experimental and computational approaches. Pharm Res. 2017;34(11):2385–2402. doi:10.1007/s11095-017-2245-928840432
  • Atochina-Vasserman EN, Guo CJ, Abramova E, et al. Surfactant dysfunction and lung inflammation in the female mouse model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol. 2015;53(1):96–104. doi:10.1165/rcmb.2014-0224OC25474372
  • Ura B, Di Lorenzo G, Romano F, et al. Interstitial fluid in gynecologic tumors and its possible application in the clinical practice. Int J Mol Sci. 2018;19(12):E4018. doi:10.3390/ijms1912401830545144
  • Roma-Rodrigues C, Raposo LR, Cabral R, et al. Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: implications for cancer diagnostics and therapy. Int J Mol Sci. 2017;18(1):E162. doi:10.3390/ijms1801016228098821
  • García-Romero N, Carrión-Navarro J, Esteban-Rubio S, et al. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget. 2017;8(1):1416–1428. doi:10.18632/oncotarget.1363527902458
  • Sun Y, Liu S, Qiao Z, et al. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta. 2017;982:84–95. doi:10.1016/j.aca.2017.06.00528734369
  • Ferguson Bennit HR, Gonda A, McMullen JRW, et al. Peripheral blood cell interactions of cancer-derived exosomes affect immune function. Cancer Microenviron. 2019;12(1):29–35. doi:10.1007/s12307-018-0209-129603062
  • Li A, Zhang T, Zheng M, et al. Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol. 2017;10(1):175. doi:10.1186/s13045-017-0542-829282096
  • Reátegui E, van der Vos KE, Lai CP, et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun. 2018;9(1):175. doi:10.1038/s41467-017-02261-129330365
  • Berglund E, Daré E, Branca RM, et al. Secretome protein signature of human gastrointestinal stromal tumor cells. Exp Cell Res. 2015;336(1):158–170. doi:10.1016/j.yexcr.2015.05.00425983130
  • Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol. 2015;5:115. doi:10.3389/fonc.2015.0011526075182
  • Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–474. doi:10.1146/annurev-immunol-032414-11204325622193
  • Miao YB, Ren HX, Gan N, et al. A homogeneous and “off-on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes. Anal Chim Acta. 2016;929:49–55. doi:10.1016/j.aca.2016.04.06027251948
  • Thakur A, Qiu G, Ng SP, et al. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron. 2017;94:400–407. doi:10.1016/j.bios.2017.03.03628324860
  • Cheng Y, Liang P, Geng H, et al. A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribosome biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas. Mol Cancer Res. 2012;10(7):925–936. doi:10.1158/1541-7786.MCR-11-059422679109
  • Han X, Bryson PD, Zhao Y, et al. Masked chimeric antigen receptor for tumor-specific activation. Mol Ther. 2017;25(1):274–284. doi:10.1016/j.ymthe.2016.10.01128129121
  • Dolor A, Szoka FC Jr. Digesting a path forward: the utility of collagenase tumor treatment for improved drug delivery. Mol Pharm. 2018;15(6):2069–2083. doi:10.1021/acs.molpharmaceut.8b0031929767984
  • Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer. Front Oncol. 2018;8:66. doi:10.3389/fonc.2018.0006629616188
  • Huang Y, Liu K, Li Q, et al. Exosomes function in tumor immune microenvironment. Adv Exp Med Biol. 2018;1056:109–122. doi:10.1007/978-3-319-74470-4_729754177
  • Madhankumar AB, Mrowczynski OD, Patel SR, et al. Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles. Acta Biomater. 2017;58:205–213. doi:10.1016/j.actbio.2017.06.00228583903
  • Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm. 2016;98:1–8. doi:10.1016/j.ejpb.2015.10.01726545617
  • Urabe F, Kosaka N, Yoshioka Y, et al. The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clin Transl Med. 2017;6(1):45. doi:10.1186/s40169-017-0176-z29238879
  • Vlodavsky I, Singh P, Boyango I, et al. Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat. 2016;29:54–75. doi:10.1016/j.drup.2016.10.00127912844
  • Vardaki I, Sanchez C, Fonseca P, et al. Caspase-3-dependent cleavage of Bcl-xL in the stroma exosomes is required for their uptake by hematological malignant cells. Blood. 2016;128(23):2655–2665. doi:10.1182/blood-2016-05-71596127742710
  • Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78. doi:10.1016/j.pharmthera.2017.02.02028202367
  • Zhang P, Zhang L, Qin Z, et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv Mater. 2018;30:7. doi:10.1002/adma.201705350
  • Tagalakis AD, Maeshima R, Yu-Wai-Man C, et al. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomater. 2017;51:351–362. doi:10.1016/j.actbio.2017.01.04828110069
  • Fernandes E, Ferreira JA, Andreia P, et al. New trends in guided nanotherapies for digestive cancers: a systematic review. J Control Release. 2015;209:288–307. doi:10.1016/j.jconrel.2015.05.00325957905
  • Yang K, Liu Y, Liu Y, et al. Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for mri-guided drug delivery. J Am Chem Soc. 2018;140(13):4666–4677. doi:10.1021/jacs.8b0088429543442
  • Chang L, Bertani P, Gallego-Perez D, et al. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale. 2016;8(1):243–252. doi:10.1039/c5nr03187g26309218
  • Ye Z, Zhang T, He W, et al. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces. 2018;10(15):12341–12350. doi:10.1021/acsami.7b1813529564886
  • Kooijmans SAA, Schiffelers RM, Zarovni N, et al. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: new nanotools for cancer treatment. Pharmacol Res. 2016;111:487–500. doi:10.1016/j.phrs.2016.07.00627394168
  • Tao SC, Guo SC, Zhang CQ. Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine. Adv Sci (Weinh). 2018;5(2):1700449. doi:10.1002/advs.20170044929619297
  • Wan S, He D, Yuan Y, et al. Chitosan-modified lipid nanovesicles for efficient systemic delivery of l-asparaginase. Colloids Surf B Biointerfaces. 2016;143:278–284. doi:10.1016/j.colsurfb.2016.03.04627022867
  • Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond). 2016;11(13):1745–1756. doi:10.2217/nnm-2016-010227348448
  • Deshpande NU, Jayakannan M. Cisplatin-stitched polysaccharide vesicles for synergistic cancer therapy of triple antagonistic drugs. Biomacromolecules. 2017;18(1):113–126. doi:10.1021/acs.biomac.6b0141128064505
  • Aresh W, Liu Y, Sine J, et al. The morphology of self-assembled lipid-based nanoparticles affects their uptake by cancer cells. J Biomed Nanotechnol. 2016;12(10):1852–1863. doi:10.1166/jbn.2016.229229359898
  • Cavin S, Wang X, Zellweger M, et al. Interstitial fluid pressure: a novel biomarker to monitor photo-induced drug uptake in tumor and normal tissues. Lasers Surg Med. 2017;49(8):773–780. doi:10.1002/lsm.2268728544068
  • Gong MQ, Wu JL, Chen B, et al. Self-assembled polymer/inorganic hybrid nanovesicles for multiple drug delivery to overcome drug resistance in cancer chemotherapy. Langmuir. 2015;31(18):5115–5122. doi:10.1021/acs.langmuir.5b0054225927163
  • Tan DM, Fu JY, Wong FS, et al. Tumor regression and modulation of gene expression via tumor-targeted tocotrienol niosomes. Nanomedicine (Lond). 2017;12(20):2487–2502. doi:10.2217/nnm-2017-018228972460
  • Feng C, Han X, Chi L, et al. Synthesis, characterization, and in vitro evaluation of TRAIL-modified, cabazitaxel -loaded polymeric micelles for achieving synergistic anticancer therapy. J Biomater Sci Polym Ed. 2018;29(14):1729–1744. doi:10.1080/09205063.2018.148361629851539
  • Pei Q, Hu X, Zhou J, et al. Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomater Sci. 2017;5(8):1517–1521. doi:10.1039/c7bm00052a28191576
  • Oropeza-Guzman E, Ruiz-Suárez JC. Dehydration/rehydration cycles for mixing phospholipids without the use of organic solvents. Langmuir. 2018;34(23):6869–6873. doi:10.1021/acs.langmuir.8b0079929779384
  • Al-Asmari AK, Ullah Z, Al Balowi A, et al. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach. Int J Nanomedicine. 2017;12:559–574. doi:10.2147/IJN.S12351428144138
  • Niu D, Wang X, Li Y, et al. Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv Mater. 2013;25(19):2686–2692. doi:10.1002/adma.20120431623447424
  • Seleci M, Ag Seleci D, Scheper T, et al. Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int J Mol Sci. 2017;18(7):E1415. doi:10.3390/ijms1807141528671589
  • McNicholas K, Michael MZ. Immuno-characterization of exosomes using nanoparticle tracking analysis. Methods Mol Biol. 2017;1545:35–42. doi:10.1007/978-1-4939-6728-5_327943205
  • Park YH, Lee DH, Um E, et al. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots. Electrophoresis. 2016;37(10):1353–1358. doi:10.1002/elps.20160003526920999
  • Xu X, Song R, He M, et al. Microfluidic production of nanoscale perfluorocarbon droplets as liquid contrast agents for ultrasound imaging. Lab Chip. 2017;17(20):3504–3513. doi:10.1039/c7lc00056a28933795
  • Samadikhah HR, Nikkhah M, Hosseinkhani S. Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes. Luminescence. 2017;32(4):517–528. doi:10.1002/bio.320727767252
  • Al-Ahmady ZS, Hadjidemetriou M, Gubbins J, et al. Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J Control Release. 2018;276:157–167. doi:10.1016/j.jconrel.2018.02.03829522832
  • Wang L, Wang Y, Sun X, et al. Versatile self-assembly and biosensing applications of DNA and carbon quantum dots coordinated cerium ions. Chemistry. 2017;23(43):10413–10422. doi:10.1002/chem.20170170928580665
  • Kim HJ, Oh SC. Novel systemic therapies for advanced gastric cancer. J Gastric Cancer. 2018;18(1):1–19. doi:10.5230/jgc.2018.18.e329629216
  • Liang G, Kan S, Zhu Y, et al. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int J Nanomedicine. 2018;13:585–599. doi:10.2147/IJN.S15445829430178
  • Gromov P, Gromova I. Characterization of the tumor secretome from Tumor Interstitial Fluid (TIF). Methods Mol Biol. 2016;1459:231–247. doi:10.1007/978-1-4939-3804-9_1627665563
  • Liu H, Chen W, Zhi X, et al. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene. 2018;37(36):4964–4978. doi:10.1038/s41388-018-0309-x29786077
  • Chiba M, Watanabe N, Watanabe M, et al. Exosomes derived from SW480 colorectal cancer cells promote cell migration in HepG2 hepatocellular cancer cells via the mitogen-activated protein kinase pathway. Int J Oncol. 2016;48(1):305–312. doi:10.3892/ijo.2015.325526647805
  • Tanaka M, Ishikawa S, Ushiku T, et al. EVI1 modulates oncogenic role of GPC1 in pancreatic carcinogenesis. Oncotarget. 2017;8(59):99552–99566. doi:10.18632/oncotarget.2060129245923