195
Views
29
CrossRef citations to date
0
Altmetric
Original Research

Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds

, , , , , , , , , & show all
Pages 5051-5060 | Published online: 10 Jul 2019

References

  • Mafazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64. doi:10.1021/acsami.9b0150828782570
  • Stejskalova A, Almquist BD. Using biomaterials to rewire the process of wound repair. Biomater Sci. 2017;5:1421–1434. doi:10.1002/ppsc.20180042028692083
  • Lim HW, Collins SA, Resneck JS, et al. The burden of skin disease in the United States. J Am Acad Dermatol. 2017;76:958–972, e952. doi:10.1039/C8TB02491J28259441
  • Gupta A, Mumtaz S, Li C-H, et al. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Rev Soc. 2019;48:415–427. doi:10.1021/acsami.8b09656
  • Lv D, Wang R, Tang G, et al. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl Mater Interfaces. 2019;11:12880–12889. doi:10.1007/s10570-017-1409-430869859
  • Sun L, Li A, Hu Y. et al. Self‐assembled fluorescent and antibacterial GHK‐Cu nanoparticles for wound healing applications part. Part Syst Charact;2019 1800420. doi:10.1002/ppsc.201800420
  • Gao S, Tang G, Hua D, et al. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B. 2019;7:709–729. doi:10.1039/C8TB02491J
  • Ding Q, Xu X, Yue Y, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces. 2018;10:27987–28002. doi:10.1021/acsami.8b0965630043614
  • Han J, Yue Y, Wu Q, et al. Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose. 2017;24:4433–4448. doi:10.1007/s10570-017-1409-4
  • Bramhill J, Ross S, Ross G. Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health. 2017;14:1–21. doi:10.3390/ijerph14010066
  • Sandri G, Bonferoni MC, Ferrari F, et al. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym. 2014;102:970–977. doi:10.1016/j.carbpol.2013.10.02924507371
  • Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF. Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale. 2016;8:7257–7271. doi:10.1039/C6NR00641H26974658
  • Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224. doi:10.1016/j.actbio.2017.05.03228522411
  • Sandri G, Bonferoni MC, Rossi S, et al. Clay minerals for tissue regeneration, repair, and engineering In: Wound Healing Biomaterials. Ed. Agren M. Chapter 19, Vol. 2 Sawston, Cambridge, UK: Woodhead Publishing, Elsevier, 2016:385–402. Functional Biomaterials.
  • Wiles JA, Bradbury BJ, Pucci MJ. New quinolone antibiotics: a survey of the literature from 2005 to 2010. Exp Opin Therap Patents. 2010;20:1295–1319. doi:10.1517/13543776.2010.505922
  • Nakamura M, Nishida T, Mishima H, Otori T. Effects of antimicrobials on corneal epithelial migration. Curr Eye Res. 1993;12(8):733–740. doi:10.3109/027136893089957698222734
  • Malipeddi VR, Dua K, Sara UVS, et al. Comparative evaluation of transdermal formulations of norfloxacin with silver sulfadiazine cream, USP, for burn wound healing property. J Burns Wounds. 2006;5:e4.16921417
  • Mpharm KD, Ramana MV, Sara UVS, et al. Preparation and evaluation of transdermal plasters containing norfloxacin: a novel treatment for burn wound healing. Eplasty. 2010;10:e44.20596234
  • Tian Z, Zhang Y, Liu X, Chen C, Guiltinan MJ, Allcock HR. Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polym Chem. 2013;4:1826. doi:10.1039/c2py21064a
  • Galperin A, Smith K, Geisler NS, Bryers JD, Ratner BD. Precision-porous polyHEMA-based scaffold as an antibiotic-releasing insert for a scleral bandage. ACS Biomater Sci Eng. 2015;1:593–600. doi:10.1021/acsbiomaterials.5b00133
  • Mahmoud AA. Salama AH Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci. 2016;83:155–165. doi:10.1016/j.ejps.2015.12.02626733072
  • Rusanu A, Tamaş AI, Vulpe R, Rusu A, Butnaru M, Vereştiuc L. Biocompatible and biodegradable hydrogels based on chitosan and gelatin with potential applications as wound dressings. J Nanosci Nanotechnol. 2017;17:4584–4591. doi:10.1166/jnn.2017.14298
  • Carazo E, Borrego-Sánchez A, García-Villén F, et al. Assessment of halloysite nanotubes as vehicles of isoniazid. Colloids Surf B Biointerfaces. 2017;160:337–344. doi:10.1016/j.colsurfb.2017.09.03628957775
  • Carazo E, Borrego-Sánchez A, García-Villén F, et al. Adsorption and characterisation of palygorskite-isoniazid nanohybrids. Appl Clay Sci. 2018;160:180–185. doi:10.1016/j.clay.2017.12.027
  • Viseras C, Aguzzi C, Cerezo P, Bedmar MC. Biopolymer–clay nanocomposites for controlled drug delivery. Mat Sci Technol. 2008;24:1020–1026. doi:10.1179/174328408X341708
  • Samanidou VF, Demetriou CE, Papadoyannis IN. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC. Anal Bioanal Chem. 2003;375(5):623–629. doi:10.1007/s00216-003-1749-912638045
  • Rossi S, Marciello M, Sandri G, et al. Wound dressings based on chitosans and hyaluronic acid for the release of chlorhexidine diacetate in skin ulcer therapy. Pharm Dev Technol. 2007;12:415–422. doi:10.1080/1083745070136690317763146
  • Viseras MT, Aguzzi C, Cerezo P, Viseras C, Valenzuela C. Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite. Micropor Mesopor Mat. 2008;108:112–116. doi:10.1016/j.micromeso.2007.03.033
  • Borrego-Sánchez A, Carazo E, Aguzzi C, Viseras C, Sainz-Díaz CI. Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl Clay Sci. 2018;160:173–179. doi:10.1016/j.clay.2017.12.024
  • Aguzzi C, Sandri G, Bonferoni C, et al. Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B Biointerfaces. 2014;113:152–157. doi:10.1016/j.colsurfb.2013.08.04324077113
  • Tunç S, Duman O. Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci. 2010;48:414–424. doi:10.1016/j.clay.2010.01.016
  • Mazuel C. Norfloxacin In: Florey K, Brittain H, Mazzo D, et al., editors. Analytical Profiles of Drug Substances and Excipients. 1st ed. London Academic Press Inc; 1991:557–600.
  • Katdare AV, Ryan JA, Bavitz JF, Erb DM, Guillory JK. Characterization of hydrates of Norfloxacin. Mikrochim Acta. 1986;III:1–12. doi:10.1007/BF01196816
  • Puigjaner C, Barbas R, Portell A, Font-Bardia M, Alcobé X, Prohens R. Revisiting the solid state of norfloxacin. Cryst Growth Des. 2010;10:2948–2953. doi:10.1021/cg9014898
  • Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice In: Gyula M, Dezsö Simonyi OP, Tamás F, editors. Vol. 213 Budapest: Innova-Print Kft; 2011.
  • Barry AL, Jones RN, Thornsberry C, Ayers LW, Gerlach EH, Sommers HM. Antibacterial activities of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin, and nalidixic acid. Antimicrob Agents Chemother. 1984;25:633–637. doi:10.1128/aac.25.5.6336233935
  • Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria—“A battle of the titans”. Front Microbiol. 2018;9:1441. doi:10.3389/fmicb.2018.0144130013539
  • Kumar M, Curtis A, Hoskins C. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics. 2018;10:11. doi:10.3390/pharmaceutics10010011
  • Norrby SR, Jonsson M. Antibacterial activity of norfloxacin. Antimicrob Agents Chemother. 1983;23:15–18. doi:10.1128/AAC.23.1.156219617
  • Wang Y, Zhu L, Dong Z, et al. Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions. Colloids Surf B Biointerfaces. 2012;98:105–111. doi:10.1016/j.colsurfb.2012.05.00622659379