770
Views
94
CrossRef citations to date
0
Altmetric
Review

Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering

, &
Pages 4333-4351 | Published online: 11 Jun 2019

References

  • Facts and Statistics | International Osteoporosis Foundation. Available from: https://www.iofbonehealth.org/facts-statistics. Accessed March 9, 2019.
  • Haagsma JA, Graetz N, Bolliger I, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Inj Prev. 2016;22:3–18. doi:10.1136/injuryprev-2015-04194426635210
  • Carrington JL. Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun. 2005;328:700–708. doi:10.1016/j.bbrc.2004.12.19315694404
  • Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci. 2009;98:1317–1375. doi:10.1002/jps.2152818729202
  • Wijewardena A, Vandervord E, Lajevardi SS, Vandervord J, Jackson CJ. Combination of activated Protein C and topical negative pressure rapidly regenerates granulation tissue over exposed bone to heal recalcitrant orthopedic wounds. Int J Low Extrem Wounds. 2011;10:146–151. doi:10.1177/153473461141734221807809
  • Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–181. doi:10.1111/j.1749-6632.2009.05429.x20536932
  • Duncan G, McCormick C, Tufaro F. The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. J Clin Invest. 2001;108:511–516. doi:10.1172/JCI1373711518722
  • Bizzetto R, Bonfim C, Rocha V, et al. Outcomes after related and unrelated umbilical cord blood transplantation for hereditary bone marrow failure syndromes other than Fanconi anemia. Haematologica. 2011;96:134–141. doi:10.3324/haematol.2010.02783921071499
  • Heidekrueger PI, Juran S, Ehrl D, Aung T, Tanna N, Broer PN. Global aesthetic surgery statistics: a closer look. J Plast Surg Hand Surg. 2017;51:270–274. doi:10.1080/2000656X.2016.124884227844485
  • Grasman JM, Zayas MJ, Page RL, Pins GD. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomater. 2015;25:2–15. doi:10.1016/j.actbio.2015.07.03826219862
  • Locker PH, Arthur J, Edmiston T, Puri R, Levine BR. Management of bone defects in orthopedic trauma. Bull Hosp Jt Dis. 2018;76:278–284.
  • Bone Grafts and Substitutes Market Size, Share & Trends Analysis Report by Material Type (Natural, Synthetic), by Application Type (Spinal Fusion, Craniomaxillofacial, Long Bone), by Region, and Segment Forecasts, 2018–2025. Grand View Research: San Francisco (CA); 2018 Available from: https://www.grandviewresearch.com/industry-analysis/bone-grafts-substitutes-market. Accessed May 23, 2019.
  • Zhang K, Wang S, Zhou C, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6:31. doi:10.1038/s41413-018-0032-930374416
  • Lin CC, Ki CS, Shih H. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci. 2015;132:1–11. doi:10.1002/app.4156325866416
  • Wojnar R. Bone and cartilage – its structure and physical properties. In: A Ochsner, W Ahmed, editors. Biomechanics of hard tissues: modeling, testing, and materials Weinheim: Wiley–VCH Verlag GmbH & Co.; 2010:1–75.
  • Fyhrie DP. Osteoporosis in men. In: Orwoll ES, Bilezikian JP, Vanderschueren D, editors. The mechanical properties of bone. Amsterdam: Elsevier; 2010:51–67.
  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–765. doi:10.1002/mabi.20030004415468269
  • Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015;28:57–71. doi:10.3967/bes2015.01025566863
  • Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31. doi:10.1016/j.biocel.2015.05.01725997875
  • Gentili C, Cancedda R. Cartilage and bone extracellular matrix. Curr Pharm Des. 2009;15:1334–1348. doi:10.2174/13816120978784673919355972
  • Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10:3815–3826. doi:10.1016/j.actbio.2014.05.02424914825
  • Mackie EJ, Ahmed YA, Tatarczuch L, Chen K-S, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40:46–62. doi:10.1016/j.biocel.2008.02.01917659995
  • Ruimerman R. Modeling and Remodeling in Bone Tissue [PhD thesis]. Eindhoven: Eindhoven University of Technology; 2005.  
  • Wiese A, Pape HC. Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am. 2010;41:1–4. doi:10.1016/j.ocl.2009.07.00319931047
  • Berner A, Reichert JC, Müller MB, et al. Treatment of long bone defects and non-unions: from research to clinical practice. Cell Tissue Res. 2012;347:501–519. doi:10.1007/s00441-011-1184-821574059
  • Ode A, Duda GN, Geissler S, et al. Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat. PLoS One. 2014;9:e106462. doi:10.1371/journal.pone.010646225187955
  • Mastrogiacomo M, Campi G, Cancedda R, Cedola A. Synchrotron radiation techniques boost the research in bone tissue engineering. Acta Biomater. 2019;89:33–46. doi:10.1016/j.actbio.2019.03.03130880235
  • Ma S, Boughton O, Karunaratne A, et al. Synchrotron Imaging Assessment of Bone Quality. Clin Rev Bone Miner Metab. 2016;14:150–160. doi:10.1007/s12018-016-9223-327683260
  • Cooper DML, Erickson B, Peele AG, Hannah K, Thomas CDL, Clement JG. Visualization of 3D osteon morphology by synchrotron radiation micro-CT. J Anat. 2011;219:481–489. doi:10.1111/j.1469-7580.2011.01398.x21644972
  • Labriet H, Nemoz C, Renier M, et al. Significant dose reduction using synchrotron radiation computed tomography: first clinical case and application to high resolution CT exams. Sci Rep. 2018;8:12491. doi:10.1038/s41598-018-30902-y30131501
  • Larrue A, Rattner A, Peter Z-A, et al. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in Human trabecular bone. PLoS One. 2011;6:e21297. doi:10.1371/journal.pone.002129721750707
  • Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M. Synchrotron phase tomography: an emerging imaging method for microvessel detection in engineered bone of craniofacial districts. Front Physiol. 2017;8:769. doi:10.3389/fphys.2017.0076929085301
  • Campi G, Fratini M, Bukreeva I, et al. Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater. 2015;23:309–316. doi:10.1016/j.actbio.2015.05.03326049151
  • Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42:591–598. doi:10.1016/j.injury.2011.03.03621543068
  • Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013;21:571–576.23996988
  • Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 2008;16:137–162. doi:10.1016/j.joca.2008.02.01318279766
  • Colen S, van Den Bekerom MPJ, Mulier M, Haverkamp D. Hyaluronic acid in the treatment of knee osteoarthritis. BioDrugs. 2012;26:257–268. doi:10.1007/BF0326188422734561
  • Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sport Traumatol Arthrosc. 2015;23:3729–3735. doi:10.1007/s00167-014-3295-8
  • Petersen JP, Ruecker A, von Stechow D, et al. Present and Future therapies of articular cartilage defects. Eur J Trauma. 2003;29:1–10. doi:10.1007/s00068-003-1215-6
  • Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41:731–738. doi:10.1016/S0020-1383(10)70016-420233614
  • Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–124. doi:10.4161/org.2330623247591
  • Afshar A. Reimplantation of a large extruded segment of bone in an open fracture. J Hand Surg Am. 2017;42:128–134. doi:10.1016/j.jhsa.2016.11.02428040299
  • Shanmuganathan R, Chandra Mohan AK, Agraharam D, Perumal R, Jayaramaraju D, Kulkarni S. Successful reimplantation of extruded long bone segments in open fractures of lower limb – A report of 3 cases. Injury. 2015;46:1389–1392. doi:10.1016/j.injury.2015.04.00625943294
  • Masquelet AC, Fitoussi F, Begue T, Muller GP. [Reconstruction of the long bones by the induced membrane and spongy autograft]. Ann Chir Plast Esthet. 2000;45:346–353.10929461
  • Guerado E, Fuerstenberg CH. What bone graft substitutes should we use in post-traumatic spinal fusion? Injury. 2011;42:S64–S71. doi:10.1016/j.injury.2011.06.20021839997
  • Drosos GI, Touzopoulos P, Ververidis A, Tilkeridis K, Kazakos K. Use of demineralized bone matrix in the extremities. World J Orthop. 2015;6:269–277. doi:10.5312/wjo.v6.i2.26925793167
  • White SL, Hirth R, Mahíllo B, et al. The global diffusion of organ transplantation: trends, drivers and policy implications. Bull World Health Organ. 2014;92:826–835. doi:10.2471/BLT.13.12612825378744
  • Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29; discussion 429. doi:10.22203/eCM.v021a31
  • Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104:1372–1382. doi:10.1016/j.ijbiomac.2016.12.04627993655
  • Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev. 2016;97:260–269. doi:10.1016/j.addr.2015.11.01926658243
  • Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP. Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med. 2010;4:514–523. doi:10.1002/term.21020872738
  • Xavier JR, Thakur T, Desai P, et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano. 2015;9:3109–3118. doi:10.1021/nn507282f25674809
  • Walmsley GG, Ransom RC, Zielins ER, et al. Stem cells in bone regeneration. Stem Cell Rev. 2016;12:524–529. doi:10.1007/s12015-016-9665-527250635
  • Lv D, Zhu M, Jiang Z, et al. Green electrospun nanofibers and their application in air filtration. Macromol Mater Eng. 2018;303:1800336. doi:10.1002/mame.v303.12
  • Lv D, Wang R, Tang G, et al. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl Mater Interfaces. 2019;11:12880–12889. doi:10.1021/acsami.9b0150830869859
  • Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials. 2010;31:4620–4629. doi:10.1016/j.biomaterials.2010.01.04220303582
  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30:4325–4335. doi:10.1016/j.biomaterials.2009.04.04219501901
  • Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. Electrospun water-soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules. 2008;9:349–354. doi:10.1021/bm700901518067266
  • Hsiao C-W, Bai M-Y, Chang Y, et al. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. 2013;34:1063–1072. doi:10.1016/j.biomaterials.2012.10.06523164424
  • Jang J-H, Castano O, Kim H-W. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61:1065–1083. doi:10.1016/j.addr.2009.07.00819646493
  • Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27:3115–3124. doi:10.1016/j.biomaterials.2006.01.02216458961
  • Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–4322. doi:10.1016/j.biomaterials.2008.07.03818715637
  • Li X, Xie J, Yuan X, Xia Y. Coating electrospun Poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir. 2008;24:14145–14150. doi:10.1021/la802984a19053657
  • Bhattacharyya S, Kumbar SG, Khan YM, et al. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2009;5:69–75. doi:10.1166/jbn.2009.03220055108
  • Haisch A, Wanjura F, Radke C, et al. Immunomodulation of tissue-engineered transplants: in vivo bone generation from methylprednisolone-stimulated chondrocytes. Eur Arch Oto-Rhino-Laryngol. 2004;261:216–224. doi:10.1007/s00405-003-0646-3
  • Wang Y, Cui W, Chou J, Wen S, Sun Y, Zhang H. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surfaces B. 2018;172:90–97. doi:10.1016/j.colsurfb.2018.08.024
  • Cai YZ, Zhang GR, Wang LL, Jiang YZ, Ouyang HW, Zou XH. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. J Biomed Mater Res Part A. 2012;100 A:1187–1194. doi:10.1002/jbm.a.34063
  • Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–276. doi:10.1016/j.addr.2016.04.01527125191
  • Peach MS, Ramos DM, James R, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One. 2017;12:e0174789. doi:10.1371/journal.pone.017478928369135
  • Ito Y, Ochi M, Adachi N, et al. Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthrosc J Arthrosc Relat Surg. 2005;21:1155–1163. doi:10.1016/j.arthro.2005.06.016
  • Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV. PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014;25:325–340. doi:10.1080/09205063.2013.85987224274102
  • Hwang PTJ, Murdock K, Alexander GC, et al. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. J Biomed Mater Res Part A. 2016;104:1017–1029. doi:10.1002/jbm.a.35614
  • Lee JH, Park J-H, El-Fiqi A, et al. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. Acta Biomater. 2014;10:2750–2761. doi:10.1016/j.actbio.2014.01.02124468581
  • Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–2082. doi:10.1016/S0142-9612(02)00635-X12628828
  • Fang R, Zhang E, Xu L, Wei S. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J Nanosci Nanotechnol. 2010;10:7747–7751. doi:10.1166/jnn.2010.283121138024
  • Eap S, Ferrand A, Palomares CM, et al. Electrospun nanofibrous 3D scaffold for bone tissue engineering. Biomed Mater Eng. 2012;22:137–141.22766712
  • Xu T, Miszuk JM, Zhao Y, Sun H, Electrospun Polycaprolactone FH. 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater. 2015;4:2238–2246. doi:10.1002/adhm.20150034526332611
  • Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 2015;37:218–229. doi:10.1016/j.biomaterials.2014.10.01525453952
  • Daňková J, Buzgo M, Vejpravová J, et al. Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. Int J Nanomed. 2015;10:7307–7317. doi:10.2147/IJN.S93670
  • Van Hong Thien D, Hsiao SW, Ho MH, Li CH, Shih JL. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci. 2013;48:1640–1645. doi:10.1007/s10853-012-6921-1
  • Frohbergh ME, Katsman A, Mondrinos MJ, et al. Osseointegrative properties of electrospun hydroxyapatite-containing nanofibrous chitosan scaffolds. Tissue Eng. Part A. 2015;21:970–981. doi:10.1089/ten.tea.2013.078925336062
  • Mi H-Y, Palumbo S, Jing X, Turng L-S, Li W-J, Peng X-F. Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size. J Biomed Mater Res B Appl Biomater. 2014;102:1434–1444. doi:10.1002/jbm.b.3312224574168
  • Vozzi G, Corallo C, Carta S, et al. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res Part A. 2014;102:1415–1421. doi:10.1002/jbm.a.34823
  • Zhang X, Meng S, Huang Y, et al. Electrospun Gelatin/β-TCP composite nanofibers enhance osteogenic differentiation of BMSCs and in vivo bone formation by activating Ca2+ sensing receptor signaling. Stem Cells Int. 2015;2015:1–13. doi:10.1155/2015/328957
  • Wang Y-W, Yang F, Wu Q, et al. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials. 2005;26:755–761. doi:10.1016/j.biomaterials.2004.03.02315350780
  • Chen J-P, Chen S-H, Lai G-J. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett. 2012;7:170. doi:10.1186/1556-276X-7-17022394697
  • Wu J, Zheng A, Liu Y, et al. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Int J Nanomed. 2019;14:733–751. doi:10.2147/IJN.S187664
  • Xu B, Li Y, Deng B, Liu X, Wang L, Zhu QL. Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Exp Ther Med. 2017;13:588–594. doi:10.3892/etm.2017.402628352335
  • Ding Q, Xu X, Yue Y, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces. 2018;10:27987–28002. doi:10.1021/acsami.8b0965630043614
  • Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271. doi:10.1016/j.biomaterials.2015.08.04526414409
  • Hayashi C, Hasegawa U, Saita Y, et al. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. J Cell Physiol. 2009;220:1–7. doi:10.1002/jcp.v220:119301257
  • Qasim M, Baipaywad P, Udomluck N, Na D, Park H. Enhanced therapeutic efficacy of lipophilic amphotericin B against Candida albicans with amphiphilic poly(N-isopropylacrylamide) nanogels. Macromol Res. 2014;22:1125–1131. doi:10.1007/s13233-014-2162-2
  • Wang J, Hurren C, Sutti A, Lin T, Wang X. Thermo-responsive PNIPAM nanofibres crosslinked by OpePOSS. Proc SPIE. 2013;8793:879318.
  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–3329. doi:10.1002/adma.v21:32/3320882499
  • Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–343. doi:10.1016/j.biomaterials.2015.10.07626561931
  • Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers XF, Swieszkowski W. Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration. J Biomed Mater Res Part A. 2018;106:201–209. doi:10.1002/jbm.a.36226
  • Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R. Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules. 2007;8:1844–1850. doi:10.1021/bm700879t17523655
  • Seebach E, Freischmidt H, Holschbach J, Fellenberg J, Richter W. Mesenchymal stroma cells trigger early attraction of M1 macrophages and endothelial cells into fibrin hydrogels, stimulating long bone healing without long-term engraftment. Acta Biomater. 2014;10:4730–4741. doi:10.1016/j.actbio.2014.07.01725058402
  • Chang SC-N, Tai C-L, Chung H-Y, Lin T-M, Jeng L-B. Bone marrow mesenchymal stem cells form ectopic woven bone in vivo through endochondral bone formation. Artif Organs. 2009;33:301–308. doi:10.1111/j.1525-1594.2009.00728.x19335406
  • Park H, Choi B, Hu J, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9:4779–4786. doi:10.1016/j.actbio.2012.10.03822935326
  • Naderi-Meshkin H, Andreas K, Matin MM, et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int. 2014;38:72–84. doi:10.1002/cbin.1018124108671
  • Sá-Lima H, Tuzlakoglu K, Mano JF, Reis RL. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications. J Biomed Mater Res Part A. 2011;98A:596–603. doi:10.1002/jbm.a.33140
  • Moreira CDF, Carvalho SM, Mansur HS, Pereira MM. Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C. 2016;58:1207–1216. doi:10.1016/j.msec.2015.09.075
  • Kamoun EA. N-succinyl chitosan–dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res. 2016;7:69–77. doi:10.1016/j.jare.2015.02.00226843972
  • Santo VE, Gomes ME, Mano JF, Reis RL. Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J Tissue Eng Regen Med. 2012;6:s47–s59. doi:10.1002/term.v6.S322684916
  • Heo DN, Ko W-K, Bae MS, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B. 2014;2:1584–1593. doi:10.1039/C3TB21246G
  • Oh BHL, Bismarck A, Chan-Park MB. Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol Rapid Commun. 2015;36:364–372. doi:10.1002/marc.20140052425504548
  • Geng X, Mo X, Fan L, Yin A, Fang J. Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. J Mater Chem. 2012;22:25130. doi:10.1039/c2jm34737g
  • Steck E, Fischer J, Lorenz H, Gotterbarm T, Jung M, Richter W. Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage. Stem Cells Dev. 2009;18:969–978. doi:10.1089/scd.2008.021319049404
  • Moshaverinia A, Chen C, Akiyama K, et al. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J Biomed Mater Res Part A. 2013. doi:10.1002/jbm.a.34546
  • Yu F, Cao X, Li Y, Zeng L, Yuan B, Chen X. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry.”. Polym Chem. 2014;5:1082–1090. doi:10.1039/C3PY00869J
  • Lyu C-Q, Lu J-Y, Cao C-H, et al. Induction of osteogenic differentiation of human adipose-derived stem cells by a novel self-supporting graphene hydrogel film and the possible underlying mechanism. ACS Appl Mater Interfaces. 2015;7:20245–20254. doi:10.1021/acsami.5b0580226323463
  • Mohan YM, Premkumar T, Lee K, Geckeler KE. Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun. 2006;27:1346–1354. doi:10.1002/(ISSN)1521-3927
  • Xu G, Wang X, Deng C, et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)–poly(ethylene glycol)–oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 2015;15:55–64. doi:10.1016/j.actbio.2014.12.01625545323
  • Xidaki D, Agrafioti P, Diomatari D, et al. Synthesis of hydroxyapatite, β-tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: loading, release and in vitro studies. Materials (Basel). 2018;11:595. doi:10.3390/ma11081451
  • Garrido CA, Lobo SE, Turíbio FM, Legeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater. 2011;2011:129727. doi:10.1155/2011/12972721760793
  • Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials. 2014;35:9087–9099. doi:10.1016/j.biomaterials.2014.01.02625123923
  • Carrow JK, Cross LM, Reese RW, et al. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci. 2018;115:E3905–E3913. doi:10.1073/pnas.171616411529643075
  • Kerativitayanan P, Tatullo M, Khariton M, Joshi P, Perniconi B, Gaharwar AK. Nanoengineered osteoinductive and elastomeric scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2017;3:590–600. doi:10.1021/acsbiomaterials.7b00029
  • Zhong M, Liu YT, Liu XY, et al. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Soft Matter. 2016;12:5420–5428. doi:10.1039/c5sm02053k27230478
  • Qasim M, Udomluck N, Chang J, Park H, Kim K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomed. 2018;13:235–249. doi:10.2147/IJN.S177627
  • Howk D, Chu T-MG. Design variables for mechanical properties of bone tissue scaffolds. Biomed Sci Instrum. 2006;42:278–283.16817621
  • Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang X-Q. Bioactive hydrogels for bone regeneration. Bioact Mater. 2018;3:401–417. doi:10.1016/j.bioactmat.2018.05.00630003179
  • Nuttelman CR, Tripodi MC, Anseth KS. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res. 2004;68A:773–782. doi:10.1002/(ISSN)1097-4636
  • Ovsianikov A, Deiwick A, Van Vlierberghe S, et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules. 2011;12:851–858. doi:10.1021/bm101530521366287
  • Cao L, Cao B, Lu C, Wang G, Yu L, Ding J. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B. 2015;3:1268–1280. doi:10.1039/C4TB02051K
  • Ma Y-H, Yang J, Li B, Jiang Y-W, Lu X, Chen Z. Biodegradable and injectable polymer–liposome hydrogel: a promising cell carrier. Polym Chem. 2016;7:2037–2044. doi:10.1039/C5PY01773D
  • Qasim M, Haq F, Kang MH, Kim JH. 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomed. 2019;14:1311–1333. doi:10.2147/IJN.S189587
  • De Mori A, Peña Fernández M, Blunn G, et al. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers (Basel). 2018;10:285. doi:10.3390/polym10030285
  • An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1:261–268. doi:10.15302/J-ENG-2015061
  • Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16–33. doi:10.1016/j.actbio.2018.11.03930481607
  • Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 2017;56:3–13. doi:10.1016/j.actbio.2017.03.03028342878
  • Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3:278–314. doi:10.1016/j.bioactmat.2017.10.00129744467
  • Nandi SK, Fielding G, Banerjee D, Bandyopadhyay A, Bose S. 3D-printed β-TCP bone tissue engineering scaffolds: effects of chemistry on in vivo biological properties in a rabbit tibia model. J Mater Res. 2018;33:1939–1947. doi:10.1557/jmr.2018.23330739987
  • Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. J Biomater Sci Polym Ed. 2017;28:532–554. doi:10.1080/09205063.2017.128618428125380
  • Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37:2349–2355. doi:10.1007/s10529-015-1921-226198849
  • Yoon S, Park JA, Lee HR, Yoon WH, Hwang DS, Jung S. Inkjet–spray hybrid printing for 3D freeform fabrication of multilayered hydrogel structures. Adv Healthc Mater. 2018;7:1–10.
  • Sawkins MJ, Mistry P, Brown BN, Shakesheff KM, Bonassar LJ, Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication. 2015;7:035004. doi:10.1088/1758-5090/7/3/03500426133398
  • Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. 2015;10:1568–1577. doi:10.1002/biot.20140063525641582
  • Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10:6849–6857. doi:10.1021/acsami.7b1605929405059
  • Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials. 2018;162:34–46. doi:10.1016/j.biomaterials.2018.01.05729432987
  • Cui H, Zhu W, Nowicki M, Zhou X, Khademhosseini A, Zhang LG. Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioactive factors into architectural design. Adv Healthc Mater. 2016;5:2174–2181. doi:10.1002/adhm.20160050527383032
  • Reichert JC, Wullschleger ME, Cipitria A, et al. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop. 2011;35:1229–1236. doi:10.1007/s00264-010-1146-x21136053
  • Wang MO, Piard CM, Melchiorri A, Dreher ML, Fisher JP. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng. Part A. 2015;21:1642–1653. doi:10.1089/ten.tea.2014.049525627168
  • Kao C-T, Lin -C-C, Chen Y-W, Yeh C-H, Fang H-Y, Shie M-Y. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;56:165–173. doi:10.1016/j.msec.2015.06.028
  • Kuo Y-C, Yeh C-F. Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Colloids Surfaces B. 2011;82:624–631. doi:10.1016/j.colsurfb.2010.10.032
  • Zhang H, Mao X, Du Z, et al. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater. 2016;17:136–148. doi:10.1080/14686996.2016.114553227877865
  • Zhao W, Wang J, Zhai W, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26:6113–6121. doi:10.1016/j.biomaterials.2005.04.02515927252
  • Yang C, Wang X, Ma B, et al. 3D-printed bioactive ca3sio5 bone cement scaffolds with nano surface structure for bone regeneration. ACS Appl Mater Interfaces. 2017;9:5757–5767. doi:10.1021/acsami.6b1429728117976
  • Zhu H, Zhai D, Lin C, et al. 3D plotting of highly uniform Sr5(PO4)2SiO4 bioceramic scaffolds for bone tissue engineering. J Mater Chem B. 2016;4:6200–6212. doi:10.1039/C6TB01692H
  • Roohani-Esfahani S-I, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6:19468. doi:10.1038/srep1946826782020
  • Barui S, Chatterjee S, Mandal S, Kumar A, Basu B. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis. Mater Sci Eng C. 2017;70:812–823. doi:10.1016/j.msec.2016.09.040
  • Miao S, Zhu W, Castro NJ, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep. 2016;6:27226. doi:10.1038/srep2722627251982
  • Su J-W, Tao X, Deng H, et al. 4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter. 2018;14:765–772. doi:10.1039/c8sm00535d29302670
  • Hendrikson WJ, Rouwkema J, Clementi F, van Blitterswijk CA, Farè S, Moroni L. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication. 2017;9:031001. doi:10.1088/1758-5090/aa811428726680
  • Wang MO, Vorwald CE, Dreher ML, et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv Mater. 2015;27:138–144. doi:10.1002/adma.20140394325387454
  • Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today. 2017;20:577–591. doi:10.1016/j.mattod.2017.06.005
  • Geris L. In Vivo, in Vitro, in Silico: Computational Tools for Product and Process Design in Tissue Engineering. 2012:1–15.