256
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Green synthesis of AgNPs@PPE and its Pseudomonas aeruginosa biofilm formation activity compared to pomegranate peel extract

, &
Pages 6891-6899 | Published online: 28 Aug 2019

References

  • Bogino PC, Oliva Mde L, Sorroche FG, Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Inter J Molecul Sci. 2013;14:15838–15859.
  • Singh P, Pandit S, Garnæs J, et al. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomed. 2018;13:3571–3591.
  • Allesen-Holm M, Barken KB, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59:1114–1128. doi:10.1111/mmi.2006.59.issue-416430688
  • Fu -Y-Y, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. Int J Nanomed. 2019;14:1805–1815. doi:10.2147/IJN.S186571
  • Alhariri M, Majrashi MA, Bahkali AH, et al. Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities. Int J Nanomed. 2017;12:6949–6961. doi:10.2147/IJN.S141709
  • Zhang X, Geng H, Gong L, et al. Modification of the surface of titanium with multifunctional chimeric peptides to prevent biofilm formation via inhibition of initial colonizers. Int J Nanomed. 2018;13:5361–5375. doi:10.2147/IJN.S170819
  • Costerton B. Microbial ecology comes of age and joins the general ecology community. Proc Natl Acad Sci USA. 2004;101:16983–16984. doi:10.1073/pnas.040788610115572449
  • Machado MC, Webster TJ. Decreased Pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes: a dynamic lung model. Int J Nanomed. 2016;11:3825–3831. doi:10.2147/IJN.S108253
  • Nagaveni S, Rajeswari H, Oli AK, Patil SA, Chandrakanth RK. Widespread emergence of multidrug resistant Pseudomonas aeruginosa isolated from CSF samples. Ind J Micro. 2011;51(1):2–7. doi:10.1007/s12088-011-0062-0
  • Celik I, Temur A, Isik I. Hepatoprotective role and antioxidant capacity of pomegranate (Punica granatum) flowers infusion against trichloroacetic acid-exposed in rats. Food Chem Toxicol. 2009;47:145–149. doi:10.1016/j.fct.2008.10.02019022327
  • Harue-Endo E, Ueda-Nakamura T, Nakamura CV, Dias Filho PB. Activity of spray-dried microparticles containing pomegranate peel extract against candida albicans. Molecules. 2012;17:10094–10107. doi:10.3390/molecules17091009422922280
  • Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol. 2012;143(2):397–405. doi:10.1016/j.jep.2012.07.00422820239
  • Meléndez PA, Capriles VA. Antibacterial properties of tropical plants from Puerto Rico. Phytomed. 2006;13(4):272–276. doi:10.1016/j.phymed.2004.11.009
  • Machado TB, Leal ICR, Amaral ACF, Santos KRN, Silva MG, Kuster RM. Antimicrobial ellagitannin of punica granatum fruits. J Braz Chem Soc. 2002;13:606–610. doi:10.1590/S0103-50532002000500010
  • Braga LC, Leite AAM, Xavier KGS, et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microb. 2005;51:541–547.
  • Dahham SS, Ali MN, Tabassum H. Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am Eurasian J Agric Environ Sci. 2010;9(3):273–281.
  • Salunke GR, Ghosh S, Santosh Kumar RJ, et al. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomed. 2014;9:2635–2653.
  • Liao S, Zhang Y, Pan X, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed. 2019;14:1469–1487. doi:10.2147/IJN.S191340
  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385–406.26339255
  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17:1534. doi:10.3390/ijms17091534
  • Długosz O, Banach M. Continuous production of silver nanoparticles and process control. J Cluster Sci. 2019;30:541–552. doi:10.1007/s10876-019-01505-y
  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72. doi:10.1016/j.micpath.2018.02.00829427709
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi:10.1016/j.micpath.2017.11.01329146498
  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018;116:221–226. doi:10.1016/j.micpath.2018.01.03829407231
  • Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C Mater Biol Appl. 2018;89:429–443. doi:10.1016/j.msec.2018.03.03529752116
  • Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539(1–2):104–111. doi:10.1016/j.ijpharm.2018.01.03429366941
  • Saratale RG, Karuppusamy I, Saratale GD, et al. A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B Biointerfaces. 2018;170:20–35. doi:10.1016/j.colsurfb.2018.05.04529860217
  • Shankar PD, Shobana S, Karuppusamy I, et al. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb Technol. 2016;95:28–44. doi:10.1016/j.enzmictec.2016.10.01527866624
  • Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweedEnteromorpha compressa and its biomedical properties. Biotechnol Rep (Amst). 2017;14:1–7. doi:10.1016/j.btre.2017.02.00128459002
  • Saratale GD, Saratale RG, Benelli G, et al. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Cluster Sci. 2017;28:1709–1727. doi:10.1007/s10876-017-1179-z
  • Fernandes RA, Berretta AA, Torres EC, et al. Antimicrobial potential and cytotoxicity of silver nanoparticles phytosynthesized by pomegranate peel extract. Antibiotics (Basel). 2018;7(3):51. doi:10.3390/antibiotics7030077
  • Nasiriboroumand M, Montazer M, Barani H. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. J Photochem Photobiol B. 2018;179:98–104. doi:10.1016/j.jphotobiol.2018.01.00629351880
  • Sahraei R, Farmany A, Mortazavi SS. A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chem. 2013;138:1239–1242. doi:10.1016/j.foodchem.2012.11.02923411238
  • O’toole GA. Microtiter dish biofilm formation assay. JoVE. 2011;47. doi:10.3791/2437
  • Nyenje ME, Green E, Ndip RN. Biofilm formation and adherence characteristics of listeria ivanovii strains isolated from ready-to-eat foods in Alice, South Africa. Sci World J. 2012;873909. doi:10.1100/2012/873909
  • Méndez-Vilas A, Ed. Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Badajoz: Formatex; 2007. .
  • Namasivayam SKR, Preethi M, Bharani RS, Robin G, Latha B. Biofilm inhibitory effect of silver nanoparticles coated catheter against Staphylococcus aureus and evaluation of its synergistic effects with antibiotics. Int J Pharm Sci Rev Res. 2012;3(2):259–265.
  • Suvith VS, Philip D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:526–532. doi:10.1016/j.saa.2013.09.01624091344
  • Kumar V, Yadav SK. Plant mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol. 2009;84:151–157. doi:10.1002/jctb.v84:2
  • Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterialactivity. Appl Nanosci. 2016;6:399–408. doi:10.1007/s13204-015-0449-z
  • Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod. 1996;59:205–215.8991956
  • Vasconcelos LC, Sampaio MC, Sampaio FC, Higino JS. Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses. 2003;46:192–196. doi:10.1046/j.1439-0507.2003.00884.x12801361
  • Stern JL, Hagerman AE, Steinberg PD, Mason PK. Phlorotannin-protein interactions. J Chem Ecol. 1996;22:1887–1899. doi:10.1007/BF02028510
  • Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microb Lett. 2004;236:163–173. doi:10.1111/j.1574-6968.2004.tb09643.x
  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microb Biotech. 2010;85(4):1115–1122. doi:10.1007/s00253-009-2159-5
  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ. 2014;468–469:968–976.
  • Park HJ, Park S, Roh J, et al. Biofilm-inactivating activity of silver nanoparticles: a comparison with silver ions. J Ind Eng Chem. 2013;19:614–619. doi:10.1016/j.jiec.2012.09.013
  • Méndez-Vilas A, Ed. Microbial pathogens and strategies for combating them. Sci Technol Educ. Badajoz: Formatex; 2013.
  • Ahmad N, Sharma S, Rai R. Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv Mater Lett. 2012;3(5):376–380.