77
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Electrostatic complex of neurotrophin 4 with dendrimer nanoparticles: controlled release of protein in vitro and in vivo

, , , , , , & show all
Pages 6117-6131 | Published online: 01 Aug 2019

References

  • Molina-Holgado F, Doherty P, Williams G. Tandem repeat peptide strategy for the design of neurotrophic factor mimetics. CNS Neurol Disord Drug Targets. 2008;7(1):110–119. doi:10.2174/18715270878388520018289037
  • Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci. 2018;91:25–33. doi:10.1016/j.mcn.2018.03.01329596897
  • Machalinska A, Kawa M, Pius-Sadowska E, et al. Long-term neuroprotective effects of NT-4-engineered mesenchymal stem cells injected intravitreally in a mouse model of acute retinal injury. Invest Ophthalmol Vis Sci. 2013;54(13):8292–8305. doi:10.1167/iovs.13-1222124265016
  • BDNF study group (phase III). A controlled trial of recombinant methionyl human BDNF in ALS.Neurology. 1999;52(7):1427–1433. doi:10.1212/WNL.52.7.142710227630
  • Geral C, Angelova A, Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics. 2013;5(1):127–167. doi:10.3390/pharmaceutics501012724300402
  • Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7–23. doi:10.1038/nrn337923254191
  • Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener. 2012;1(1):14. doi:10.1186/2047-9158-1-1423210531
  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–175. doi:10.1016/j.pharmthera.2013.01.00423348013
  • Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33(3):979–988. doi:10.1016/j.biomaterials.2011.10.01022048009
  • LaVail MM, Unoki K, Yasumura D, Matthes MT, Yancopoulos GD, Steinberg RH. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci U S A. 1992;89(23):11249–11253. doi:10.1073/pnas.89.23.112491454803
  • Paskowitz DM, Donohue-Rolfe KM, Yang H, et al. Neurotrophic factors minimize the retinal toxicity of verteporfin photodynamic therapy. Invest Ophthalmol Vis Sci. 2007;48(1):430–437. doi:10.1167/iovs.06-069017197564
  • Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W. Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol. 2013;156(2):283–292.e1. doi:10.1016/j.ajo.2013.03.02123668681
  • El Sanharawi M, Kowalczuk L, Touchard E, Omri S, de Kozak Y, Behar-Cohen F. Protein delivery for retinal diseases: from basic considerations to clinical applications. Prog Retin Eye Res. 2010;29(6):443–465. doi:10.1016/j.preteyeres.2010.04.00120398784
  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–151. doi:10.1016/j.drudis.2007.10.02118275912
  • Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–1617. doi:10.3109/03639045.2012.73651523153114
  • McNerny DQ, Leroueil PR, Baker JR. Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(3):249–259. doi:10.1002/wnan.7920166124
  • Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 2002;19(9):1310–1316.12403067
  • Thomas TP, Majoros IJ, Kotlyar A, et al. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem. 2005;48(11):3729–3735. doi:10.1021/jm040187v15916424
  • Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev. 2013;65(10):1316–1330. doi:10.1016/j.addr.2013.01.00123415951
  • Leroueil PR, Berry SA, Duthie K, et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008;8(2):420–424. doi:10.1021/nl072292918217783
  • Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65(1–2):133–148.10699277
  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252(1–2):263–266.12550802
  • Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res. 1996;30(1):53–65. doi:10.1002/(SICI)1097-4636(199601)30:1<53::AID-JBM8>3.0.CO;2-Q8788106
  • Das AK, Hsiao PY. Charged dendrimers in trivalent salt solutions under the action of DC electric fields. J Phys Chem B. 2014;118(23):6265–6276. doi:10.1021/jp411658924837658
  • Tokarczyk K, Jachimska B. Quantitative interpretation of PAMAM dendrimers adsorption on silica surface. J Colloid Interface Sci. 2017;503:86–94. doi:10.1016/j.jcis.2017.05.00228500943
  • Jachimska B, Lapczynska M, Zapotoczny S. Reversible swelling process of sixth-generation Poly(amido amine) dendrimers molecule as determined by quartz crystal microbalance technique. J Phys Chem C. 2013;117(2):1136–1145. doi:10.1021/jp307832p
  • Porus M, Clerc F, Maroni P, Borkovec M. Ion-specific responsiveness of polyamidoamine (PAMAM) dendrimers adsorbed on silica substrates. Macromolecules. 2012;45(9):3919–3927. doi:10.1021/ma3004295
  • Welch P, Muthukumar M. Tuning the density profile of dendritic polyelectrolytes. Macromolecules. 1998;31(17):5892–5897. doi:10.1021/ma980198w
  • Li N, Cai H, Jiang L, et al. Enzyme-Sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9(8):6865–6877. doi:10.1021/acsami.6b1550528112512
  • Lamy CM, Sallin O, Loussert C, Chatton JY. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano. 2012;6(2):1176–1187. doi:10.1021/nn203822t22288942
  • Choi SK, Myc A, Silpe JE, et al. Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano. 2013;7(1):214–228. doi:10.1021/nn303899523259666
  • Wang F, Zhang B, Zhou L, et al. Imaging dendrimer-grafted graphene oxide mediated anti-miR-21 delivery with an activatable luciferase reporter. ACS Appl Mater Interfaces. 2016;8(14):9014–9021. doi:10.1021/acsami.6b0266227010367
  • Cao J, Ge R, Zhang M, et al. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. Nanoscale. 2018;10(19):9021–9037. doi:10.1039/c7nr09552j29717725
  • Kim K, Lee J, Jo G, Shin S, Kim JB, Jang JH. Dendrimer-capped gold nanoparticles for highly reliable and robust surface enhanced Raman scattering. ACS Appl Mater Interfaces. 2016;8(31):20379–20384. doi:10.1021/acsami.6b0571027403733
  • Ma W, Fu F, Zhu J, et al. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale. 2018;10(13):6113–6124. doi:10.1039/c7nr09269e29547220
  • Giri J, Diallo MS, Simpson AJ, et al. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. ACS Nano. 2011;5(5):3456–3468. doi:10.1021/nn102100721438566
  • Curtis RA, Ulrich J, Montaser A, Prausnitz JM, Blanch HW. Protein-protein interactions in concentrated electrolyte solutions. Biotechnol Bioeng. 2002;79(4):367–380. doi:10.1002/bit.1034212115400
  • Lin YL, Khanafer K, El-Sayed ME. Quantitative evaluation of the effect of poly(amidoamine) dendrimers on the porosity of epithelial monolayers. Nanoscale. 2010;2(5):755–762. doi:10.1039/b9nr00407f20648321
  • Yang B, Xu H, Wang S, et al. Studying the dynamic mechanism of transporting a single drug carrier-polyamidoamine dendrimer through cell membranes by force tracing. Nanoscale. 2016;8(42):18027–18031. doi:10.1039/c6nr05838h27734053
  • Dabkowska M, Adamczyk Z, Cie?la M, Adamczak M, Bober J. Lysozyme monolayers at polymer microparticles: electrokinetic characteristics and modeling. J Phys Chem C. 2018;122(31):17846–17855. doi:10.1021/acs.jpcc.8b04916
  • Kujda M, Adamczyk Z, Ciesla M. Monolayers of the HSA dimer on polymeric microparticles-electrokinetic characteristics. Colloids Surf B Biointerfaces. 2016;148:229–237. doi:10.1016/j.colsurfb.2016.08.01727606496
  • Bratek-Skicki A, Zeliszewska P, Adamczyk Z, Ciesla M. Human fibrinogen monolayers on latex particles: role of ionic strength. Langmuir. 2013;29(11):3700–3710. doi:10.1021/la400419y23421850
  • Zhenhua XT, Yiyun Cheng X, Minglu M, Peng X, Haiou Q, Wen L. Colorimetric determination of polyamidoamine dendrimers and their derivates using a simple and rapid ninhydrin assay. Anal Lett. 2008;41:444–455. doi:10.1080/00032710701484350
  • Adamczyk Z, Bratek-Skicki A, Dabrowska P, Nattich-Rak M. Mechanisms of fibrinogen adsorption on latex particles determined by zeta potential and AFM measurements. Langmuir. 2012;28(1):474–485. doi:10.1021/la203811922026755
  • Machalinska A, Kawa MP, Pius-Sadowska E, et al. Endogenous regeneration of damaged retinal pigment epithelium following low dose sodium iodate administration: an insight into the role of glial cells in retinal repair. Exp Eye Res. 2013;112:68–78. doi:10.1016/j.exer.2013.04.00423623997
  • Machalinska A, Roginska D, Pius-Sadowska E, et al. Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury. Stem Cells Int. 2015;2015:620364. doi:10.1155/2015/62036425810725
  • Dabkowska M, Adamczak M, Barbasz J, Ciesla M, Machalinski B. Adsorption/desorption transition of recombinant human neurotrophin 4: physicochemical characterization. Langmuir. 2017;33(38):9548–9557. doi:10.1021/acs.langmuir.7b0090928825842
  • Mullen DG, Fang M, Desai A, Baker JR, Orr BG, Banaszak Holl MM. A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano. 2010;4(2):657–670. doi:10.1021/nn900999c20131876
  • Wasilewska M, Adamczyk Z, Jachimska B. Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (DLS) and viscosity measurements. Langmuir. 2009;25(6):3698–3704. doi:10.1021/la803662a19228031
  • Adamczyk Z, Bratek A, Jachimska B, Jasinski T, Warszynski P. Structure of poly(acrylic acid) in electrolyte solutions determined from simulations and viscosity measurements. J Phys Chem B. 2006;110(45):22426–22435. doi:10.1021/jp063981w17091984
  • Delgado AV, Gonzalez-Caballero F, Hunter RJ, Koopal LK, Lyklema J. Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci. 2007;309(2):194–224. doi:10.1016/j.jcis.2006.12.07517368660
  • Roberts D, Keeling R, Tracka M, et al. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody. Mol Pharm. 2015;12(1):179–193. doi:10.1021/mp500533c25389571
  • Adamczyk Z, Nattich M, Wasilewska M, Zaucha M. Colloid particle and protein deposition - electrokinetic studies. Adv Colloid Interface Sci. 2011;168(1–2):3–28. doi:10.1016/j.cis.2011.04.00221621181
  • Aubin-Tam ME, Hamad-Schifferli K. Structure and function of nanoparticle-protein conjugates. Biomed Mater. 2008;3(3):034001. doi:10.1088/1748-6041/3/3/03400118689927
  • Geoghegan WD, Ackerman GA. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977;25(11):1187–1200. doi:10.1177/25.11.2121721217
  • Bayraktar H, You CC, Rotello VM, Knapp MJ. Facial control of nanoparticle binding to cytochrome C. J Am Chem Soc. 2007;129(10):2732–2733. doi:10.1021/ja067497i17309259
  • Adamczyk Z. Particles at Interfaces. Vol. 20 Amsterdam: Elsevier; 2017:700.
  • Serra J, Puig J, Martin A, Galisteo F, Galvez J, Hildago-Alvarez R. On the adsorption of IgG onto polystyrene particles: electrophoretic mobility and critical coagulation concentration. Colloid Polym Sci. 1992;270(6):574–583. doi:10.1007/BF00658288
  • Bharti B, Meissner J, Findenegg GH. Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir. 2011;27(16):9823–9833. doi:10.1021/la201898v21728288
  • Meder F, Daberkow T, Treccani L, et al. Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomater. 2012;8(3):1221–1229. doi:10.1016/j.actbio.2011.09.01421963406
  • Klose T, Welzel PB, Werner C. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles. Colloids Surf B Biointerfaces. 2006;51(1):1–9. doi:10.1016/j.colsurfb.2006.04.01916797943
  • Elliott Donaghue I, Tator CH, Shoichet MS. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci. 2015;3(1):65–72. doi:10.1039/c4bm00311j26214190
  • Machalinska A, Lubinski W, Klos P, et al. Sodium iodate selectively injuries the posterior pole of the retina in a dose-dependent manner: morphological and electrophysiological study. Neurochem Res. 2010;35(11):1819–1827. doi:10.1007/s11064-010-0248-620725778
  • Ding HM, Ma YQ. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials. 2014;35(30):8703–8710. doi:10.1016/j.biomaterials.2014.06.03325005681