98
Views
5
CrossRef citations to date
0
Altmetric
Original Research

A genipin-crosslinked protein–polymer hybrid system for the intracellular delivery of ribonuclease A

, , , , ORCID Icon & ORCID Icon
Pages 7389-7398 | Published online: 10 Sep 2019

References

  • Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39. doi:10.1038/nrd239918097458
  • Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: contemporary developments and challenges. Biomaterials. 2017;134:91–116. doi:10.1016/j.biomaterials.2017.04.03628458031
  • Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99:2557–2575. doi:10.1002/jps.2205420049941
  • Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA. 2016;113:2868–2873. doi:10.1073/pnas.152024411326929348
  • Leland PA, Raines RT. Cancer chemotherapy - ribonucleases to the rescue. Chem Biol. 2001;8:405–413.11358688
  • Wang M, Alberti K, Sun S, et al. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed. 2014;53:2893–2898. doi:10.1002/anie.201311245
  • Wang M, Sun S, Neufeld CI, et al. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed. 2014;53:13444–13448. doi:10.1002/anie.201407234
  • He H, Chen Y, Li Y, et al. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv Funct Mater. 2018;28:1706710. doi:10.1002/adfm.201706710
  • Liu M, Shen S, Wen D, et al. Hierarchical nanoassemblies-assisted combinational delivery of cytotoxic protein and antibiotic for cancer treatment. Nano Lett. 2018;18:2294–2303. doi:10.1021/acs.nanolett.7b0497629547698
  • Shao D, Li M, Wang Z, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv Mater. 2018;30:1801198. doi:10.1002/adma.201801198
  • Akash MSH, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev. 2015;55:371–406. doi:10.1080/15583724.2014.995806
  • Rehman K, Akash MSH, Akhtar B, et al. Delivery of therapeutic proteins: challenges and strategies. Curr Drug Targets. 2016;17:1172–1188.26648073
  • Chang J, Chen X, Glass Z, et al. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc Chem Res. 2019;52:665–675. doi:10.1021/acs.accounts.8b0049330586281
  • Zou S, Scarfo K, Nantz MH, et al. Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm. 2010;389:232–243. doi:10.1016/j.ijpharm.2010.01.01920080162
  • Liu X, Zhang P, He D, et al. pH-reversible cationic RNase A conjugates for enhanced cellular delivery and tumor cell killing. Biomacromolecules. 2015;17:173–182. doi:10.1021/acs.biomac.5b0128926652751
  • D’Astolfo DS, Pagliero RJ, Pras A, et al. Efficient intracellular delivery of native proteins. Cell. 2015;161:674–690. doi:10.1016/j.cell.2015.03.02825910214
  • Altinoglu SA, Wang M, Li KQ, et al. Intracellular aelivery of the PTEN protein using cationic lipidoids for cancer therapy. Biomater Sci. 2016;4:1773–1780. doi:10.1039/c6bm00580b27748775
  • Jain A, Barve A, Zhao Z, et al. Comparison of avidin, neutravidin, and streptavidin as nanocarriers for efficient siRNA delivery. Mol Pharm. 2017;14:1517–1527. doi:10.1021/acs.molpharmaceut.6b0093328026957
  • Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliver Rev. 2017;110–111:157–168. doi:10.1016/j.addr.2016.08.004
  • Wang X, Li Y, Li Q, et al. Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J Control Release. 2017;263:39–45. doi:10.1016/j.jconrel.2017.01.03728153764
  • Chen TT, Yi JT, Zhao YY, et al. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc. 2018;140:9912–9920. doi:10.1021/jacs.8b0445730008215
  • Yu C, Tan E, Xu Y, et al. A guanidinium-rich polymer for effiecient cytosolic delivery of native proteins. Bioconjug Chem. 2019;30:413–417. doi:10.1021/acs.bioconjchem.8b0075330383369
  • Zhang J, Wu D, Xing Z, et al. N-isopropylacrylamide-modified polyethylenimine-mediated p53 gene delivery to prevent the proliferation of cancer cells. Colloids Surf B Biointerfaces. 2015;129:54–62. doi:10.1016/j.colsurfb.2015.03.03225829127
  • Liang S, Duan Y, Xing Z, et al. Inhibition of cell proliferation and migration by chondroitin sulfate-g-polyethylenimine-mediated miR-34a delivery. Colloids Surf B Biointerfaces. 2015;136:577–584. doi:10.1016/j.colsurfb.2015.09.05426454548
  • Xing Z, Gao S, Duan Y, et al. Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer. Int J Nanomed. 2015;10:5715–5727.
  • Ewe A, Przybylski S, Burkhardt J, et al. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo. J Control Release. 2016;230:13–25. doi:10.1016/j.jconrel.2016.03.03427061141
  • Han H, Shi H, Wu D, et al. Genipin-cross-linked thermophilic histone-polyethylenimine as a hybrid gene carrier. ACS Macro Lett. 2015;4:575–578. doi:10.1021/acsmacrolett.5b00141
  • Lu H, Lu T, Chen C, Mi F-L. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2019;128:973–984. doi:10.1016/j.ijbiomac.2019.02.01030738901
  • Silva NFN, Saint-Jalmes A, de Carvalho AF, et al. Development of casein microgels from cross-linking of casein micelles by genipin. Langmuir. 2014;30:10167–10175. doi:10.1021/la502274b25117401
  • Xu J, Strandman S, Zhu JX, Barralet J, Cerruti M. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials. 2015;37:395–404. doi:10.1016/j.biomaterials.2014.10.02425453967
  • Suh J, An Y, Tang BC, et al. Real-time gene delivery vector tracking in the endo-lysosomal pathway of live cells. Microsc Res Tech. 2012;75:691–697. doi:10.1002/jemt.2111322095650
  • Shukla RS, Jain A, Zhao Z, Cheng K. Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex. Nanomedicine. 2016;12:1323–1334. doi:10.1016/j.nano.2016.02.00326970028
  • Zhao Z, Li Y, Jain A, et al. Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells. Nanomedicine. 2018;14:51–56. doi:10.1016/j.nano.2017.08.01728890106
  • Gu X, Wei X, Fan Q, et al. cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. J Control Release. 2019;301:110–118. doi:10.1016/j.jconrel.2019.03.00530898610
  • Hu S, Chen X, Lei C, et al. Charge designable and tunable GFP as a target pH-responsive carrier for intracellular functional protein delivery and tracing. Chem Commun. 2018;54:7806–7809. doi:10.1039/C8CC03285H
  • Zhao S, Duan F, Liu S, et al. Efficient intracellular delivery of RNase A using DNA origami carriers. ACS Appl Mater Interfaces. 2019;11:11112–11118. doi:10.1021/acsami.8b2172430874429
  • Wu D, Wang C, Yang J, et al. Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and miR-519c mediated by porous PLGA microparticle. Mol Pharm. 2016;13:3925–3933. doi:10.1021/acs.molpharmaceut.6b0070227684197