541
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam

, , , &
Pages 4741-4754 | Published online: 02 Jul 2019

References

  • Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP. Green silver nanoparticles of phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of pseudomonas aeruginosa. J Nanobiotechnology. 2014;12(1):40. doi:10.1186/s12951-014-0040-x25271044
  • Duman F, Ocsoy I, Kup FO. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater Sci Eng. 2016;60:333–338. doi:10.1016/j.msec.2015.11.052
  • de Barros CHN, Cruz GCF, Mayrink W, Tasic L. Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol Sci Appl. 2018;11:1. doi:10.2147/NSA.S15611529618924
  • Swathy B. A review on metallic silver nanoparticles. IOSR J Pharm. 2014;4(7):2250–3013.
  • Patra JK, Baek K-H. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials. Int J Nanomedicine. 2016;11:4691. doi:10.2147/IJN.S10892027695326
  • Yu D, Yam V-W-W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J Phys Chem B. 2005;109(12):5497–5503.16851589
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45.29146498
  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72.29427709
  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018;116:221–226.29407231
  • Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng. 2018;89:429–443.
  • Islam S. Nutritional and Medicinal Qualities of Sweetpotato Tops and Leaves. Cooperative Extension Service, University of Arkansas; Fayetteville, Arkansas; 2014.
  • Mohanraj R, Sivasankar S. Sweet potato (Ipomoea batatas [L.] Lam)-A valuable medicinal food: a review. J Med Food. 2014;17(7):733–741. doi:10.1089/jmf.2013.281824921903
  • Anastácio A, Silva R, Carvalho IS. Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network. J Food Sci Technol. 2016;53(12):4117–4125. doi:10.1007/s13197-016-2354-128115751
  • Ayeleso TB, Ramachela K, Mukwevho E. A review of therapeutic potentials of sweet potato: pharmacological activities and influence of the cultivar. Trop J Pharm Res. 2016;15(12):2751–2761. doi:10.4314/tjpr.v15i12.31
  • Maria D, Rodica S. Researches on the sweet potato (Ipomea batatas L.) behaviour under the soil and climatic conditions of the South-West of Romania. J Hortic For Biotechnol. 2015;19(1):79–84.
  • Xu Y, Cartier A, Porter A, et al. Bioactive compounds and biological activity of extracts from virginia-grown sweet potatoes affected by different cooking methods. J Food Meas Charact. 2018;12(4):2591–2597. doi:10.1007/s11694-018-9876-3
  • Park S-Y, Lee SY, Yang JW, et al. Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers. Food Sci Biotechnol. 2016;25(1):283–291. doi:10.1007/s10068-016-0041-730263269
  • Frond AD, Iuhas CI, Stirbu I, et al. Phytochemical characterization of five edible purple-reddish vegetables: anthocyanins, flavonoids, and phenolic acid derivatives. Molecules. 2019;24(8):1536. doi:10.3390/molecules24081536
  • Ghosh P, Fawcett D, Sharma S, Poinern G. Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials. 2017;10(8):852. doi:10.3390/ma10080852
  • Patra JK, Baek K-H. Novel green synthesis of gold nanoparticles using citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int J Nanomedicine. 2015;10:7253.26664116
  • Basavegowda N, Idhayadhulla A, Lee YR. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind Crops Prod. 2014;52:745–751. doi:10.1016/j.indcrop.2013.12.006
  • Patra JK, Das G, Kumar A, Ansari A, Kim H, Shin H-S. Photo-mediated biosynthesis of silver nanoparticles using the non-edible accrescent fruiting calyx of physalis peruviana L. fruits and investigation of its radical scavenging potential and cytotoxicity activities. J Photochem Photobiol B. 2018;188:116–125. doi:10.1016/j.jphotobiol.2018.08.00430266015
  • Butala MA, Kukkupuni SK, Venkatasubramanian P, Vishnuprasad CN. An ayurvedic anti‐diabetic formulation made from curcuma longa L. and emblica officinalis L. Inhibits α‐Amylase, α‐Glucosidase, and starch digestion, in vitro. Starch‐Stärke. 2018;70(5–6):1700182. doi:10.1002/star.201700182
  • Naqvi SZH, Kiran U, Ali MI, et al. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine. 2013;8:3187. doi:10.2147/IJN.S3746523986635
  • Das G, Park S, Baek K-H. Diversity of endophytic bacteria in a fern species dryopteris uniformis (makino) makino and evaluation of their antibacterial potential against five foodborne pathogenic bacteria. Foodborne Pathog Dis. 2017;14(5):260–268. doi:10.1089/fpd.2016.224328418717
  • Faedmaleki F, Shirazi FH, Salarian -A-A, Ashtiani HA, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res. 2014;13(1):235.24734076
  • Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arabian J Chem. 2015. doi:10.1016/j.arabjc.2015.11.002
  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673–2702. doi:10.1039/C8RA08982E
  • Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28. doi:10.1016/j.jare.2015.02.00726843966
  • Reenaa M, Menon AS. Synthesis of silver nanoparticles from different citrus fruit peel extracts and a comparative analysis on its antibacterial activity. Int J Curr Microbiol Applied Sci. 2017;6:2358–2365. doi:10.20546/ijcmas
  • Omran BA, Nassar HN, Fatthallah NA, Hamdy A, El-Shatoury EH, El-Gendy NS. Waste upcycling of citrus sinensis peels as a green route for the synthesis of silver nanoparticles. Energy Sources Part A. 2018;40(2):227–236. doi:10.1080/15567036.2017.1410597
  • Burdușel A-C, Gherasim O, Grumezescu A, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018;8(9):681. doi:10.3390/nano8090681
  • Fernando S, Gunasekara T, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J Infect Dis. 2018;8:1. doi:10.4038/sljid.v8i1.8167
  • Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539(1–2):104–111. doi:10.1016/j.ijpharm.2018.01.03429366941
  • Siddiqi KS, Husen A, Rao RA. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14.29452593
  • Rafiq S, Kaul R, Sofi S, Bashir N, Nazir F, Nayik GA. Citrus peel as a source of functional ingredient: a review. J Saudi Soc Agric Sci. 2018;17(4):351–358. doi:10.1016/j.jssas.2016.07.006
  • Rehan M, Abdel-Wahed NA, Farouk A, El-Zawahry MM. Extraction of valuable compounds from orange peel waste for advanced functionalization of cellulosic surfaces. ACS Sustainable Chem Eng. 2018;6(5):5911–5928. doi:10.1021/acssuschemeng.7b04302
  • Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf. 2018;17(3):512–531. doi:10.1111/crf3.2018.17.issue-3
  • Guan Y, Wu T, Lin M, Ye J. Determination of pharmacologically active ingredients in sweet potato (Ipomoea batatas L.) by capillary electrophoresis with electrochemical detection. J Agric Food Chem. 2006;54(1):24–28. doi:10.1021/jf050834716390172
  • Meva F, Segnou ML, Ebongue CO, et al. Unexplored vegetal green synthesis of silver nanoparticles: A preliminary study with corchorus olitorus linn and ipomea batatas (L.) Lam. Afr J Biochem. 2016;15(10):341–349. doi:10.5897/AJB2015.14962
  • Majid M, Nasir B, Zahra SS, Khan MR, Mirza B, Haq I-U. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement Altern Med. 2018;18(1):216. doi:10.1186/s12906-018-2317-330005651
  • de Albuquerque TMR, Sampaio KB, de Souza EL. Sweet potato roots: unrevealing an old food as a source of health promoting bioactive compounds – A review. Trends Food Sci Technol. 2019;85:277–286. doi:10.1016/j.tifs.2018.11.006
  • He Y, Wei F, Ma Z, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 2017;7(63):39842–39851. doi:10.1039/C7RA05286C
  • Woolfe JA. Sweet Potato: An Untapped Food Resource. Cambridge University Press; Cambridge, United Kingdom; 1992.
  • Escalante-Sánchez E, Pereda-Miranda R. Batatins I and II, ester-type dimers of acylated pentasaccharides from the resin glycosides of sweet potato. J Nat Prod. 2007;70(6):1029–1034. doi:10.1021/np070093z17488129
  • Muyinza H, Stevenson PC, Talwana H, Hall D, Farman DI, Mwanga RO. Root Chemicals Could Offer Opportunities for Breeding for Sweet Potato Resistance to the Weevil Cylas Puncticollis Boheman (Coleoptera: Apionidae). In: Midiwo J, Clough J, editors. Aspects of African Biodiversity Proceedings of the Pan Africa Chemistry Network Biodiversity Conference, Nairobi, Sept 2008. London: Royal Society of Chemistry Publishing; Cambridge, United Kingdom; p.49–57; 2009.
  • Yuan J-M, Koh W-P, Murphy SE, et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res. 2009;69(7):2990–2995. doi:10.1158/0008-5472.CAN-08-433019318550
  • Zhu F, Cai Y-Z, Yang X, Ke J, Corke H. Anthocyanins, hydroxycinnamic acid derivatives, and antioxidant activity in roots of different Chinese purple-fleshed sweetpotato genotypes. J Agric Food Chem. 2010;58(13):7588–7596. doi:10.1021/jf101867t20524661
  • Panda V, Sonkamble M, Patil S. Wound healing activity of Ipomoea batatas tubers (sweet potato). Funct Foods Health Dis. 2011;1(10):403–415. doi:10.31989/ffhd.v1i10.118
  • Ludvik B, Waldhäusl W, Prager R, Kautzky-Willer A, Pacini G. Mode of action of ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism. 2003;52(7):875–880.12870164
  • Ludvik B, Neuffer B, Pacini G. Efficacy of ipomoea batatas (Caiapo) on diabetes control in type 2 diabetic subjects treated with diet. Diabetes Care. 2004;27(2):436–440. doi:10.2337/diacare.27.2.43614747225
  • Kusano S, Tamasu S, Nakatsugawa S. Effects of the white-skinned sweet potato (Ipomoea batata L.) on the expression of adipocytokine in adipose tissue of genetic type 2 diabetic mice. Food Sci Technol Res. 2005;11(4):369–372. doi:10.3136/fstr.11.369
  • Hou W-C, Han C-H, Chen H-J, Wen C-L, Lin Y-H. Storage proteins of two cultivars of sweet potato (Ipomoea batatas L.) and their protease hydrolysates exhibited antioxidant activity in vitro. Plant Sci. 2005;168(2):449–456. doi:10.1016/j.plantsci.2004.09.008
  • Huang G-J, Sheu M-J, Chen H-J, Chang Y-S, Lin Y-H. Growth inhibition and induction of apoptosis in NB4 promyelocytic leukemia cells by trypsin inhibitor from sweet potato storage roots. J Agric Food Chem. 2007;55(7):2548–2553. doi:10.1021/jf063008m17328557
  • Huang GJ, Chang HY, Chen HJ, et al. Effects of trypsin inhibitor on plasma antioxidant activity and lipid levels in mice from sweet potato roots. J Sci Food Agric. 2008;88(14):2556–2562. doi:10.1002/jsfa.3390
  • Maloney KP, Truong VD, Allen JC. Susceptibility of sweet potato (Ipomoea batatas) peel proteins to digestive enzymes. Food Sci Nutr. 2014;2(4):351–360. doi:10.1002/fsn3.11025473492
  • Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian J Chem. 2014;7(6):1131–1139.
  • Singh K, Naidoo Y, Mocktar C, Baijnath H. Biosynthesis of silver nanoparticles using Plumbago auriculata leaf and calyx extracts and evaluation of their antimicrobial activities. Adv Nat Sci. 2018;9(3):035004.
  • Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep. 2016;6:20414.26829907
  • Devaraj P, Kumari P, Aarti C, Renganathan A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotechnol. 2013; 2013; 10.1155/2013/598328.
  • Kalaiyarasu T, Karthi N, Sharmila GV, Manju V. In vitro assessment of antioxidant and antibacterial activity of green synthesized silver nanoparticles from digitaria radicosa leaves. Asian J Pharm Clin Res. 2016;9:1.
  • Coates J. Interpretation of Infrared Spectra, a Practical Approach. In: Meyers (Ed.) Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester, 2000.
  • Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod. 2013;46:132–137.
  • Basavegowda N, Lee YR. Synthesis of silver nanoparticles using satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mater Lett. 2013;109:31–33.
  • He Y, Li X, Zheng Y, et al. A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New J Chem. 2018;42(4):2882–2888.
  • Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci. 2013;3(3):217–223.
  • Etxeberria U, de la Garza AL, Campión J, Martinez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets. 2012;16(3):269–297.22360606
  • Nickavar B, Abolhasani L. Bioactivity-guided separation of an α-amylase inhibitor flavonoid from Salvia virgata. Iran J Pharm Res. 2013;12(1):57.
  • Balan K, Qing W, Wang Y, et al. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv. 2016;6(46):40162–40168.
  • Prabhu S, Vinodhini S, Elanchezhiyan C, Rajeswari D. Evaluation of antidiabetic activity of biologically synthesized silver nanoparticles using Pouteria sapota in streptozotocin‐induced diabetic rats: 在链脲霉素‐诱导的糖尿病大鼠中评估使用山榄果生物合成的银纳米粒子的降糖活性. J Diabetes. 2018;10(1):28–42.28323393
  • Govindappa M, Hemashekhar B, Arthikala M-K, Rai VR, Ramachandra Y. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys. 2018;9:400–408.
  • Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol B. 2019;193:1–7.30776484
  • AshaRani PV, Mun GK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanomaterials in Human Cells. ACS Nano. 2009;24(3):279–290. 
  • Ahmad A, Syed F, Shah A, et al. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv. 2015;5(90):73793–73806.
  • Sánchez-Navarro M, Ruiz-Torres CA, Niño-Martínez N, et al. Cytotoxic and bactericidal effect of silver nanoparticles obtained by green synthesis method using annona muricata aqueous extract and functionalized with 5-fluorouracil. Bioinorg Chem Appl. 2018;2018: 1–8. 10.1155/2018/6506381.
  • Prasannaraj G, Venkatachalam P. Green engineering of biomolecule-coated metallic silver nanoparticles and their potential cytotoxic activity against cancer cell lines. Adv Nat Sci. 2017;8(2):025001.
  • Mousavi B, Tafvizi F, Zaker Bostanabad S. Green synthesis of silver nanoparticles using artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells Nanomed Biotechnol. 2018;46(Sup 1): 499–510.
  • Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol. 2018;34(2):23.29305718
  • Patil Shriniwas P. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Rep. 2017;10:76.29114571
  • Adedapo AA, Jimoh FO, Afolayan AJ, Masika PJ. Antioxidant activities and phenolic contents of the methanol extracts of the stems of acokanthera oppositifolia and adenia gummifera. BMC Complement Altern Med. 2008;8(1):54.18817535
  • Otunola GA, Afolayan AJ. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol Biotechnol Equip. 2018;32(3):724–733.
  • Rajeshkumar S, Malarkodi C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl. 2014;2014: 1–10. 10.1155/2014/581890.
  • Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M. Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb Pathog. 2018;122:84–89.29894807
  • Ramesh P, Kokila T, Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using emblica officinalis fruit extract. Spectrochim Acta Part A. 2015;142:339–343.