688
Views
92
CrossRef citations to date
0
Altmetric
Review

Capping gold nanoparticles with albumin to improve their biomedical properties

, &
Pages 6387-6406 | Published online: 09 Aug 2019

References

  • Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108–121. doi:10.1016/j.jconrel.2016.11.01527871992
  • Chen Q, Liu Z. Albumin carriers for cancer theranostics: a conventional platform with new promise. Adv Mater. 2016;28:10557–10566. doi:10.1002/adma.v28.4727111654
  • Mariam J, Sivakami S, Dongre PM. Elucidation of structural and functional properties of albumin bound to gold nanoparticles. J Biomol Struct Dyn. 2017;35:368–379. doi:10.1080/07391102.2016.114422326821333
  • Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 2006;35:209–217. doi:10.1039/B514191E16505915
  • Alfranca, G,Artiga A, Stepien G, et al. Gold nanoprism – nanorod face off : comparing the heating efficiency, cellular internalization and thermoablation capacity. Nanomedicine (Lond.). 2016;11:2903–2916. doi:10.2217/nnm-2016-023327785974
  • AL-Jawad SMH, Taha AA, Al-Halbosiy MMF, AL-Barram LFA. Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagnosis Photodyn Ther. 2018;21:201–210. doi:10.1016/j.pdpdt.2017.12.00429223737
  • Uppal A, Bose B. Synthesis, stability, and in vitro oral cancer cell toxicity of human serum albumin stabilised gold nanoflowers. IEE. 2018. doi:10.1049/iet-nbt.2017.0002
  • Kuo W-S, Chang Y-T, Cho K-C, et al. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials. 2012;33:3270–3278. doi:10.1016/j.biomaterials.2012.01.03522289264
  • Santos NC, Domingues MM, Felício MR, Gonçalves S, Carvalho PM. Application of light scattering techniques to nanoparticle characterization and development. Front Chem. 2018;6:1–17.29441345
  • Peralta DV, Heidari Z, Dash S, Tarr MA. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. ACS Appl Mater Interfaces. 2015;7:7101–7111. doi:10.1021/acsami.5b0085825768122
  • Kelkar SS, Reineke TM. Theranostics : combining imaging and therapy. Bioconjug Chem. 2011;22:1879–1903. doi:10.1021/bc200151q21830812
  • Adura C, Guerrero S, Salas E, et al. Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl Mater Interfaces. 2013;5:4076–4085. doi:10.1021/am401486h23597259
  • Olmedo I, Araya E, Sanz F, et al. How changes in the sequence of the peptide CLPFFD-NH 2 can modify the conjugation and stability of gold nanoparticles and their affinity for -amyloid fibrils. Bioconjug Chem. 2008;19:1154–1163. doi:10.1021/bc800016y18510352
  • Cheema MA, Taboada P, Barbosa S, et al. Human serum albumin unfolding pathway upon drug binding: A thermodynamic and spectroscopic description. J Chem Thermodyn. 2009;41:439–447. doi:10.1016/j.jct.2008.11.011
  • Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Investig. 2016;46:305–315. doi:10.1007/s40005-016-0250-3
  • Bairagi U, Mittal P, Albumin MB. A versatile drug carrier. Austin Ther. 2015;2:1–6.
  • Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2013;2:881–898. doi:10.1158/2159-8290.CD-12-0345
  • Swiercz R, Mo M, Khare P, et al. Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption. Oncotarget. 2017;8:3528–3541. doi:10.18632/oncotarget.1386927974681
  • Commisso C,Davison S, Soydaner-Azeloglu R, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–637. doi:10.1038/nature1213823665962
  • Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014;5:1–7. doi:10.3389/fphys.2014.0026824478714
  • Nguyen VH, Lee BJ. Protein corona: A new approach for nanomedicine design. Int J Nanomed. 2017;12:3137–3151. doi:10.2147/IJN.S129300
  • Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res Lett. 2014;9:1–7. doi:10.1186/1556-276X-9-34324380376
  • Bhushan B, Khanadeev V, Khlebtsov B, Khlebtsov N, Gopinath P. Impact of albumin based approaches in nanomedicine: imaging, targeting and drug delivery. Adv Colloid Interface Sci. 2017;246:13–39. doi:10.1016/j.cis.2017.06.01228716187
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13:1609–1623. doi:10.1080/17425247.2016.119314927216915
  • Kratz F. A clinical update of using albumin as a drug vehicle - a commentary. J Control Release. 2014;190:331–336. doi:10.1016/j.jconrel.2014.03.01324637463
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–183. doi:10.1016/j.jconrel.2008.05.01018582981
  • Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater Sci Eng C. 2017;81:607–626. doi:10.1016/j.msec.2017.08.004
  • Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115:11147−11190. doi:10.1021/cr500441926088284
  • Saverot S-E, Reese LM, Cimini D, Vikesland PJ, Bickford LR. Characterization of conventional one-step sodium thiosulfate facilitated gold nanoparticle synthesis. Nanoscale Res Lett. 2015;10:241. doi:10.1186/s11671-015-0940-1
  • Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles. Clin Transl Oncol. 2013;15:593–601. doi:10.1007/s12094-013-1034-023359187
  • Pastoriza-Santos I, Liz-Marzan LM. Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem. 2008;18:1724–1737. doi:10.1039/b716538b
  • Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine (Lond). 2014;9:2023–2039. doi:10.2217/nnm.14.12625343351
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem. 2003;B668–B677. doi:10.1021/jp026731y
  • Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19:409–453. doi:10.1080/01442350050034180
  • Link S, El-Sayed MA. Optical properties and ultrafast d ynamics of metallic nanocrystals. Annu Rev Phys Chem. 2003;54:331–366. doi:10.1146/annurev.physchem.54.011002.10375912626731
  • Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13–28. doi:10.1016/j.jare.2010.02.002
  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy : challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157. doi:10.1016/j.jconrel.2014.12.03025545217
  • Vetterlein C, Vasquez R, Bolaños K, et al. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods. Colloids Surf B Biointerfaces 2018;166:323–329. doi:10.1016/j.colsurfb.2018.03.021
  • Alex SA, Chakraborty D, Chandrasekaran N, Mukherjee A. A comprehensive investigation of the differential interaction of human serum albumin with gold nanoparticles based on the variation in morphology and surface functionalization. RSC Adv. 2016;6:52683–52694. doi:10.1039/C6RA10506H
  • Bayazitoglu Y, Kheradmand S, Tullius TK. An overview of nanoparticle assisted laser therapy. Int J Heat Mass Transf. 2013;67:469–486. doi:10.1016/j.ijheatmasstransfer.2013.08.018
  • Schleich N, Danhier F, Préat V. Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation. J Control Release. 2015;198:35–54. doi:10.1016/j.jconrel.2014.11.02425481448
  • Sahu A, Lee JH, Lee HG, Jeong YY, Tae G. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy. J Control Release. 2016;236:90–99. doi:10.1016/j.jconrel.2016.06.03127349352
  • Qiu Y, Liu Y, Wang L, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31:7606–7619. doi:10.1016/j.biomaterials.2010.01.04220656344
  • Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33:7194–7205. doi:10.1016/j.biomaterials.2012.06.06322795856
  • Kogan MJ, Bastus NG, Amigo R, et al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett. 2006;6:110–115. doi:10.1021/nl052110f16402797
  • Stone J, Jackson S, Wright D. Biological applications of gold nanorods. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3:100–109. doi:10.1002/wnan.12020967876
  • Ajnai G, Chiu A, Kan T, Cheng C-C, Tsai T-H, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med. 2014;6:172–178. doi:10.1016/j.jecm.2014.10.015
  • Velasco-Aguirre C, Morales F, Gallardo-Toledo E, et al. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomed. 2015;10:4919–4936.
  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134:2139–2147. doi:10.1021/ja208433822191645
  • Dobrovolskaia MA, Aggarwal P, Hall JB, Mcneil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5:487–495. doi:10.1021/mp800032f18510338
  • Xiao W, Gao H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm. 2018;552:328–339. doi:10.1016/j.ijpharm.2018.10.01130308270
  • Charbgoo F, Nejabat M, Abnous K, et al. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J Control Release. 2018;272:39–53. doi:10.1016/j.jconrel.2018.01.00229305922
  • Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004;4:484–488. doi:10.1166/jnn.2003.07715503433
  • Reddy JS, Vobalaboina V. novel delivery systems for drug targeting to the brain. Drugs Future. 2004;29:63–83. doi:10.1358/dof.2004.029.01.872585
  • Majorek KA, Porebski PJ, Dayal A, et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol 2012;52(3-4):174-82. doi:10.1016/j.molimm.2012.05.011
  • Bhatty RS. Albumin proteins of eight edible grain legume species: electrophoretic patterns and amino acid composition. J Agric Food Chem. 1982;30:620–622. doi:10.1021/jf00111a0577096818
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157:168–182. doi:10.1016/j.jconrel.2011.07.03121839127
  • Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W. PDB ID: 3V03. Mol Immunol 52, 174–182 (2012).
  • Lv L, Chi Y, Chen C, Xu W. Structural and functional properties of ovalbumin glycated by dry-heating in the presence of maltodextrin. Int J Food Prop. 2015;18:1326–1333. doi:10.1080/10942912.2011.620204
  • Wang Y, Yu H, Shi X, Luo Z, Lin D, Huang M. PDB ID: 4K2C. J Biol Chem 288, 15980–15987 (2013).
  • Binaymotlagh R, Hadadzadeh H, Farrokhpour H, et al. In situ generation of the gold nanoparticles-bovine serum albumin (AuNPs-BSA) bioconjugated system using pulsed-laser ablation (PLA). Mater Chem Phys. 2016;177:360–370.
  • Apadopoulou ATP, Reen REJG, Razier RIAF. Interaction of flavonoids with bovine serum albumin : a fluorescence quenching study. Agric Food Chem. 2005;53:158–163. doi:10.1021/jf048693g
  • Nosrati H, Salehiabar M, Manjili HK, Danafar H, Davaran S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol. 2018;108:909–915. doi:10.1016/j.ijbiomac.2017.10.18029101048
  • Peters TJ. All About Albumin. San Diego: Academic Press; 1995.
  • Pragna Lakshmi T, Mondal M, Ramadas K, Natarajan S. Molecular interaction of 2,4-diacetylphloroglucinol (DAPG) with human serum albumin (HSA): the spectroscopic, calorimetric and computational investigation. Spectrochim Acta A Mol Biomol Spectrosc. 2017;183:90–102. doi:10.1016/j.saa.2017.04.01228441541
  • Li C, Xing L, Che S. Coordination bonding based pH-responsive albumin nanoparticles for anticancer drug delivery. Dalt Trans. 2012;41:3714. doi:10.1039/c2dt30226h
  • Mariam J, Sivakami S, Dongre PM. Albumin corona on nanoparticles – a strategic approach in drug delivery. Drug Deliv. 2015;1–9. doi:10.3109/10717544.2015.1048488
  • Zhiya MA, Xia H, Liu Y, Liu B, Chen W, Zhao Y. Applications of gold nanorods in biomedical imaging and related fields. Chin Sci Bull. 2013;58:2530–2536. doi:10.1007/s11434-013-5720-7
  • Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm. 2017;522:172–197. doi:10.1016/j.ijpharm.2017.01.06728188876
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951. doi:10.1038/nbt.333026348965
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337. doi:10.1002/smll.20110000121520409
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Toxicity of nanoparticles gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;3:325–327. doi:10.1002/smll.200400093
  • Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Nanosci Nanotechnol. 2004;126:10076–10084.
  • Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL. Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide - poly (ethylene glycol) monolayers. Anal Chem. 2007;79:2221–2229. doi:10.1021/ac061578f17288407
  • Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB. Gold nanosphere-antibody conjugates for hyperthermal therapeutic applications. Gold Bull. 2007;40:121–129. doi:10.1007/BF03215568
  • Mocan L, Matea C, Tabaran FA, et al. Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles. Biomaterials. 2017;119:33–42. doi:10.1016/j.biomaterials.2016.12.00927992805
  • Murawala P, Tirmale A, Shiras A, Prasad BLV. In situ synthesized BSA capped gold nanoparticles : effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells. Mater Sci Eng C. 2014;34:158–167. doi:10.1016/j.msec.2013.09.004
  • Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3. doi:10.1186/s40591-016-0048-826925240
  • Brekken RA, Sage EH, Brekken RA. Mini review SPARC, a matricellular protein: at the crossroads of cell matrix SPARC, a matricellular protein : at the crossroads of cell matrix communication. Matrix Biol. 2001;19:815–827.
  • Kouros M. SPARC (osteonectin/BM-40). Int J Biochem Cell Biol. 1999;31:1363–1366. doi:10.1016/S1357-2725(99)00090-410641790
  • Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev. 2008;27:53. doi:10.1007/s10555-008-9146-7
  • Maeda H. The link between infection and cancer: tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Sci. 2013;104:779–789. doi:10.1111/cas.1215223495730
  • Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812–818. doi:10.1016/j.drudis.2006.07.00516935749
  • Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft : molecular size dependence and cutoff size advances in brief vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–3756.7641188
  • Grobmyer SR, Moudgil B. What is cancer nanotechnology? Methods Mol Biol. 2010;624:1–9. doi:10.1007/978-1-60761-609-2_120217585
  • Bhamidipati M, Fabris L. Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: the role of size, shape, and surface chemistry. Bioconjug Chem. 2016;28:449–460. doi:10.1021/acs.bioconjchem.6b00627
  • Sanchez-Iglesias A, Grzelczak M, Altantzis T, et al. Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano. 2012;6:11059–11065. doi:10.1021/nn304760523186074
  • Ahmad R, Fu J, He N, Li S. Advanced gold nanomaterials for photothermal therapy of cancer. J Nanosci Nanotechnol. 2016;16:67–80. doi:10.1166/jnn.2016.1077027398434
  • Elzoghby AO, Hemasa AL, Freag MS. Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release. 2016;243:303–322. doi:10.1016/j.jconrel.2016.10.02327794493
  • Pramanik S, Banerjee P, Sarkar A, Bhattacharya SC. Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study. J Lumin. 2008;128:1969–1974. doi:10.1016/j.jlumin.2008.06.008
  • Boulos SP, Davis TA, Yang JA, et al. Nanoparticle − protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir. 2013;29(48):14984–14996. doi:10.1021/la402920f24215427
  • Rafaela G-Á, Marilena H, Ana S-I, Luis -ML-M, Kostas K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale. 2018;10:1256–1264. doi:10.1039/C7NR08322J29292433
  • Chakraborty S, Joshi P, Shanker V, et al. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir. 2011;27(12):7722–7731. doi:10.1021/la200787t21591651
  • Moustaoui H, Saber J, Djeddi I, et al. A protein corona study by scattering correlation spectroscopy: a comparative study between spherical and urchin-shaped gold nanoparticles. Nanoscale. 2019;11:3665–3673. doi:10.1039/C8NR09891C30741295
  • Online VA, Chandrasekaran N, Mukherjee A. A comprehensive investigation of the differential interaction of Human Serum Albumin with Gold nanoparticles based on the variation in morphology and surface functionalization. RSC Adv. 2016;58:52683–52694.
  • Carnovale C, Bryant G. Impact of nanogold morphology on interactions with human serum. Phys Chem Phys. 2018;30:29558–29565. doi:10.1039/C8CP05938A
  • Maleki MS, Moradi O, Tahmasebi S. Adsorption of albumin by gold nanoparticles: equilibrium and thermodynamics studies. Arab J Chem. 2017;10:S491–S502. doi:10.1016/j.arabjc.2012.10.009
  • Liu M. pH-sensitive Au – BSA – DOX – FA nanocomposites for combined CT imaging and targeted drug delivery. Int J Nanomedicine. 2017;12:2829–2843. doi:10.2147/IJN.S12827028435261
  • Elsadek B, Kratz F. Impact of albumin on drug delivery - New applications on the horizon. J Control Release. 2012;157:4–28. doi:10.1016/j.jconrel.2011.09.06921959118
  • Li J, Cai R, Kawazoe N, Chen G. Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells. J Mater Chem B. 2015;3:5806–5814. doi:10.1039/C4TB02051K
  • Loureiro A, Azoia NG, Gomes AC, Cavaco-Paulo A. Albumin-based nanodevices as drug carriers. Curr Pharm Des. 2016;22:1371–1390. doi:10.2174/138161282266616012511490026806342
  • Chen L, Feng W, Zhou X, et al. Facile synthesis of novel albumin-functionalized flower-like MoS 2 nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Adv. 2016;6:13040–13049. doi:10.1039/C5RA27822H
  • Lademann J, Richter H, Knorr F, et al. Acta Biomaterialia Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation. Acta Biomater. 2016;30:388–396. doi:10.1016/j.actbio.2015.11.05226621698
  • Peralta DV, He J, Wheeler DA, Zhang JZ, Tarr MA. Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. J Microencapsul. 2014;31:824–831. doi:10.3109/02652048.2014.94001225090588
  • Zu L, Liu L, Qin Y, Liu H, Yang H. Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography. Nanomed Nanotechnol Biol Med. 2016;12:1805–1813. doi:10.1016/j.nano.2016.05.003
  • Zhang L, Xia K, Bai YY, et al. Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia. J Biomed Nanotechnol. 2014;10:1440–1449.25016644
  • Paraiso WKD, Tanaka H, Sato Y, et al. Preparation of envelope-type lipid nanoparticles containing gold nanorods for photothermal cancer therapy. Colloids Surf B Biointerfaces. 2017;160:715–723. doi:10.1016/j.colsurfb.2017.10.00929035819
  • Sun J, Guo Y, Xing R, et al. Synergistic in vivo photodynamic and photothermal antitumor therapy based on collagen-gold hybrid hydrogels with inclusion of photosensitive drugs. Colloids Surf A Physicochem Eng Asp. 2017;514:155–160. doi:10.1016/j.colsurfa.2016.11.062
  • Liu P, Zheng H, Yang Z, et al. Facile preparation of versatile gadolinium-chelated protein nanocomposite for T1magnetic resonance imaging-guided photodynamic and photothermal synergetic therapy. J Mater Chem. 2018;B 6:1688–1698. doi:10.1039/C8TB00148K
  • Sasidharan S, Bahadur D, Srivastava R. Albumin stabilized gold nanostars: A biocompatible nanoplatform for SERS, CT imaging and photothermal therapy of cancer. RSC Adv. 2016;6:84025–84034. doi:10.1039/C6RA11405A
  • Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017;55:13–27. doi:10.1016/j.actbio.2017.03.05528377307
  • Rastogi L, Kora AJ, Arunachalam J. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Mater Sci Eng C. 2012;32:1571–1577. doi:10.1016/j.msec.2012.04.044
  • Klebowski B, Depciuch J, Parlinska-Wojtan M, Baran J. Applications of noble metal-based nanoparticles in medicine. Int J Mol Sci. 2018;19. doi:10.3390/ijms19124031
  • Li D, Zhang M, Xu F, et al. Biomimetic albumin-modified gold nanorods for photothermo-chemotherapy and macrophage polarization modulation. Acta Pharm Sin B. 2018;8:74–84. doi:10.1016/j.apsb.2018.04.00629872624
  • Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via raman imaging in living mice. ACS Nano. 2012;6:10366–10377. doi:10.1021/nn304347g23101432
  • Almada M, Leal-Martínez BH, Hassan N, et al. Photothermal conversion ef fi ciency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly (vinyl alcohol). Mater Sci Eng C. 2017;77:583–593. doi:10.1016/j.msec.2017.03.218
  • Zhang Z, Wang J, Nie X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc. 2014;136:7317–7326. doi:10.1021/ja412735p24773323
  • Encinas-Basurto D, Ibarra J, Juarez J, et al. Hybrid folic acid-conjugated gold nanorods-loaded human serum albumin nanoparticles for simultaneous photothermal and chemotherapeutic therapy. Mater Sci Eng C. 2018;91:669–678. doi:10.1016/j.msec.2018.06.002
  • Pelaz B, Grazu V, Ibarra A, et al. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir. 2012;28:8965–8970. doi:10.1021/la204712u22260484
  • Bao C, Beziere N, del Pino P, et al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013;9:68–74. doi:10.1002/smll.20120177923001862
  • Cui H-D, Hu D-H, Zhang J-N, et al. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy. Chin Chem Lett. 2017;28:1391–1398. doi:10.1016/j.cclet.2016.12.038
  • Santhosh M, Chinnadayyala SR, Singh NK, Goswami P. Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry. 2016;111:7–14. doi:10.1016/j.bioelechem.2016.04.00327126550
  • Ding H, Yang D, Zhao C, et al. Protein-gold hybrid nanocubes for cell imaging and drug delivery. ACS Appl Mater Interfaces. 2015;7:4713–4719. doi:10.1021/am508373325669930
  • Yu X, Liu W, Deng X, Yan S, Su Z. Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chem Eng J. 2018;335:176–184. doi:10.1016/j.cej.2017.10.148
  • Ding C, Xu Y, Zhao Y, Zhong H, Luo X. Fabrication of BSA@AuNC-based nanostructures for cell fluoresce imaging and target drug delivery. ACS Appl Mater Interfaces. 2018;10:8947–8954. doi:10.1021/acsami.7b1849329457719
  • Callaghan C, Peralta D, Liu J, et al. Combined treatment of tyrosine kinase inhibitor-labeled gold nanorod encapsulated albumin with laser thermal ablation in a renal cell carcinoma model. J Pharm Sci. 2016;105:284–292. doi:10.1016/j.xphs.2015.11.01726852860
  • Liu J, Abshire C, Carry C, et al. Nanotechnology combined therapy: tyrosine kinase-bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model. BJU Int. 2017;119:342–348. doi:10.1111/bju.2017.119.issue-227431021
  • Wang Z, Chen L, Chu Z, Huang C, Huang Y, Jia N. Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. Mater Sci Eng C. 2018;89:106–118. doi:10.1016/j.msec.2018.03.025
  • Chiu HT, Su CK, Sun YC, Chiang CS, Huang YF. Albumin-gold nanorod nanoplatform for cell-mediated tumoritropic delivery with homogenous chemodrug distribution and enhanced retention ability. Theranostics. 2017;7:3034–3052. doi:10.7150/thno.1927928839462
  • Lademann J, Richter H, Knorr F, et al. Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation. Acta Biomater. 2016;30:388–396. doi:10.1016/j.actbio.2015.11.05226621698
  • Chen J, Sheng Z, Li P, et al. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale. 2017;9:11888–11901. doi:10.1039/C7NR02798B28561825
  • Leopold LF, Tódor IS, Diaconeasa Z, et al. Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids Surfaces A Physicochem. Eng Asp. 2017;532:70–76. doi:10.1016/j.colsurfa.2017.06.061
  • Baum RP, Kulkarni HR. Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - the bad berka experience. Theranostics. 2012;2:437–447. doi:10.7150/thno.364522768024
  • Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126:187–204. doi:10.1016/j.jconrel.2007.12.01018261822
  • Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol. 2011;165:1628–1651. doi:10.1007/s12010-011-9383-z21947761
  • Fiegel V, Harlepp S, Begin-Colin S, Begin D, Mertz D. Design of protein-coated carbon nanotubes loaded with hydrophobic drugs through sacrificial templating of mesoporous silica shells. Chem Eur J. 2018. doi:10.1002/chem.201705845
  • Fu C, Ding C, Sun X, Fu A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. Mater Sci Eng C. 2018. doi:10.1016/j.msec.2017.12.028
  • Chiu HT, Chen CH, Li ML, et al. Bioprosthesis of core-shell gold nanorod/serum albumin nanoimitation: a half-native and half-artificial nanohybrid for cancer theranostics. Chem Mater. 2018;30:729–747. doi:10.1021/acs.chemmater.7b04127
  • Quan Q, Xie J, Gao H, et al. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm. 2011;8:1669–1676. doi:10.1021/mp200125j21838321
  • Abbas M, Zou Q, Li S, Yan X. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv Mater. 2017;29. doi:10.1002/adma.201700681
  • Khlebtsov B, Prilepskii A, Lomova M, Khlebtsov N. Au-nanocluster-loaded human serum albumin nanoparticles with enhanced cellular uptake for fluorescent imaging. J Innov Opt Health Sci. 2015;9:1650004. doi:10.1142/S1793545816500048
  • Han L, Xia J-M, Hai X, Shu Y, Chen X-W, Wang J-H. Protein-stabilized gadolinium oxide-gold nanoclusters hybrid for multimodal imaging and drug delivery. ACS Appl Mater Interfaces. 2017;9:6941–6949. doi:10.1021/acsami.7b0024628177224
  • You Q, Sun Q, Yu M, et al. BSA-bioinspired gadolinium hybrid-functionalized hollow gold nanoshells for NIRF/PA/CT/MR quadmodal diagnostic imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9:40017–40030. doi:10.1021/acsami.7b1192629087183
  • Topete A, Alatorre-Meda M, Iglesias P, et al. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano. 2014;8:2725–2738. doi:10.1021/nn406425h24571629
  • Aaron C, Mitragotri AS. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29. doi:10.1002/btm2.1000329313004
  • Ali MRK, Rahman MA, Wu Y, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc National Acad Sci. 2017;114:E3110–E3118. doi:10.1073/pnas.1619302114
  • Kharlamov AN, Tyurnina AE, Veselova VS, Kovtun OP, Shur VY, Gabinsky JL. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale. 2015;7:8003–8015. doi:10.1039/C5NR01050K25864858