231
Views
39
CrossRef citations to date
0
Altmetric
Original Research

Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy

, , , , , , , , , , , & show all
Pages 6425-6437 | Published online: 09 Aug 2019

References

  • Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Saf. 2013;13(1):62–77.
  • Aggarwal BB, Kumar ABharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–398.12680238
  • Steward WP, Gescher AJ. Curcumin in cancer management: recent results of analogue design and clinical studies and desirable future research. Mol Nutr Food Res. 2010;52(9):1005–1009. doi:10.1002/mnfr.200700148
  • Lin JK, Lin-Shiau SY. Mechanisms of cancer chemoprevention by curcumin. Proc Natl Sci Counc Repub China B. 2001;25(2):59–66.11370761
  • Leung MHM, Hannah C, Kee TW. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir. 2008;24(11):5672–5675. doi:10.1021/la800780w18459746
  • Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4(6):1752–1761. doi:10.1016/j.actbio.2008.04.02118524701
  • Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnology. 2007;5(1):3. doi:10.1186/1477-3155-5-317439648
  • Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6(4):1276–1282. doi:10.1158/1535-7163.MCT-06-055617431105
  • Praveen Kumar V, Jun L, George J. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J Am Chem Soc. 2006;128(27):8932–8938. doi:10.1021/ja062650u16819889
  • Tonnesen HH. Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII. Pharmazie Die. 2002;57(12):820–824.
  • Chignell CF, Bilski P, Reszka KJ, Motten AG, Sik RH, Dahl TA. Spectral and photochemical properties of curcumin. Photochem Photobiol. 2010;59(3):295–302. doi:10.1111/j.1751-1097.1994.tb05037.x
  • Laurent TC. Biochemistry of Hyaluronan. Acta Otolaryngol. 2009;104(sup442):7–24. doi:10.3109/00016488709102833
  • Herrlich P, Sleeman J, Wainwright D, et al. How tumor cells make use of CD44. Cell Adhes Commun. 1998;6(2–3):141. doi:10.3109/154190698090044709823465
  • Hall CL, Yang B, Yang X, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell. 1995;82(1):19–26. doi:10.1016/0092-8674(95)90048-97541721
  • Lee H, Mok H, Lee S, Oh YK, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release. 2007;119(2):245–252. doi:10.1016/j.jconrel.2007.02.01117408798
  • Larsen NE, Balazs EA. Drug delivery systems using hyaluronan and its derivatives. Adv Drug Deliv Rev. 1991;7(2):279–293. doi:10.1016/0169-409X(91)90007-Y
  • Maya K, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–735. doi:10.1038/nrc383825319867
  • Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16(1):15–23. doi:10.1016/j.coph.2014.02.00224632219
  • Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 2012;87(5):475–487.
  • Neyssa M, Mark G, Lisa T, Richard G. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9(4):422. doi:10.1634/theoncologist.9-4-42215266096
  • Bielack SS, Beate KB, Günter D, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. Hum Cell. 2004;17(3):131–137.15859158
  • Tianling C, James B, Robert V, et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol. 2013;42(11):1228–1236.
  • Pan H, Sima M, Kopecková P, et al. Biodistribution and pharmacokinetic studies of bone-targeting N-(2-hydroxypropyl)methacrylamide copolymer-alendronate conjugates. Mol Pharm. 2008;5(4):548–558. doi:10.1021/mp800003u18505266
  • Uludag H. Bisphosphonates as a foundation of drug delivery to bone. Curr Pharm Des. 2002;8(21):1924–1944.
  • Hyukjin L, Cheol-Hee A, Tae Gwan P. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci. 2010;9(4):336–342.
  • Qiu L, Li Z, Qiao M, et al. Self-assembled pH-responsive hyaluronic acid-g-poly((L)-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014;10(5):2024–2035. doi:10.1016/j.actbio.2013.12.02524365705
  • Cho H-J, Yoon HY, Koo H, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic? For tumor-targeted delivery of docetaxel. Biomaterials. 2011;32(29):7181–7190. doi:10.1016/j.biomaterials.2011.06.02821733572
  • Liu Y, Sun J, Cao W, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421(1):160–169. doi:10.1016/j.ijpharm.2011.09.00621945183
  • Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17):812–818. doi:10.1016/j.drudis.2006.07.00516935749
  • Jing L, Meirong H, Jing W, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012;33(7):2310–2320. doi:10.1016/j.biomaterials.2011.11.02222166223
  • Ye WL, Zhao YP, Li HQ, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep. 2015;5:14614. doi:10.1038/srep1461426419507
  • Ozcan I, Bouchemal K, Segura-Sánchez F, Ozer O, Güneri T, Ponchel G. Synthesis and characterization of surface-modified PBLG nanoparticles for bone targeting: in vitro and in vivo evaluations. J Pharm Sci. 2011;100(11):4877–4887. doi:10.1002/jps.2267821698603