97
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Toxicity and serum metabolomics investigation of Mn-doped ZnS quantum dots in mice

, , , , , , , & show all
Pages 6297-6311 | Published online: 06 Aug 2019

References

  • Touaylia S, Labiadh H. Effect of the exposure to Mn-doped ZnS nanoparticles on biomarkers in the freshwater western mosquitofish Gambusia affinis. Int J Environ Health Res. 2019;29(1):60–70. doi:10.1080/09603123.2018.150864830122067
  • He L, Bao Z, Zhang K, et al. Ratiometric determination of copper(II) using dually emitting Mn(II)-doped ZnS quantum dots as a fluorescent probe. Microchim Acta. 2018;185(11):511. doi:10.1007/s00604-018-3043-8
  • Jing W, Lu Y, Wang F, He L, Sun J, Liu Y. Time-resolved determination of Fe(II) ions using cysteine-bridged Mn-doped ZnS quantum dots as a phosphorimetric probe. Microchim Acta. 2018;185(6):298. doi:10.1007/s00604-018-2813-7
  • Deng P, Lu L-Q, Cao W-C, Tian X-K. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2017;173:578–583. doi:10.1016/j.saa.2016.10.03227776312
  • Chen J, Zhu Y, Zhang Y. Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions. Spectrochim Acta A Mol Biomol Spectrosc. 2016;164:98–102. doi:10.1016/j.saa.2016.04.01427085295
  • Jiao Z, Zhang P, Chen H, et al. Halobenzoquinone-mediated assembly of amino acid modified Mn-doped ZnS quantum dots for halobenzoquinones detection in drinking water. Anal Chim Acta. 2018;1026:147–154. doi:10.1016/j.aca.2018.04.01729852991
  • Zhang W, Han Y, Chen X, et al. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 2017;232:145–154. doi:10.1016/j.fondchem.2017.03.15628490057
  • Sadeghi S, Jahani M, Belador F. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol. Spectrochim Acta A Mol Biomol Spectrosc. 2016;159:83–89. doi:10.1016/j.saa.2016.01.04326828536
  • Ren X, Chen L. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem. 2015;407(26):8087–8095. doi:10.1007/s00216-015-8982-x26302965
  • Pilar Chantada-Vazquez M, de-Becerra-Sanchez C, Fernandez-del-Rio A, et al. Development and application of molecularly imprinted polymer-Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum. Talanta. 2018;181:232–238. doi:10.1016/j.talanta.2018.01.01729426506
  • Pilar Chantada-Vazquez M, Sanchez-Gonzalez J, Pena-Vazquez E, et al. Simple and sensitive molecularly imprinted polymer-Mn-doped ZnS quantum dots based fluorescence probe for cocaine and metabolites determination in urine. Anal Chem. 2016;88(5):2734–2741. doi:10.1021/acs.analchem.5b0425026857857
  • Pilar Chantada-Vazquez M, Sanchez-Gonzalez J, Pena-Vazquez E, et al. Synthesis and characterization of novel molecularly imprinted polymer-coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron. 2016;75:213–221. doi:10.1016/j.bios.2015.08.02226319164
  • Abbasifar J, Samadi-Maybodi A. Selective determination of atropine using poly dopamine-coated molecularly imprinted Mn-doped ZnS quantum dots. J Fluoresc. 2016;26(5):1645–1652. doi:10.1007/s10895-016-1853-927325114
  • Xiong Y, Liang M, Cheng Y, Zou J, Li Y. An “off-on” phosphorescent aptasensor for the detection of thrombin based on PRET. Analyst. 2018;144(1):161–171. doi:10.1039/c8an01571f30371694
  • Wang Z, Zhang Y, Zhang B, Lu X. Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of serotonin. Talanta. 2018;190:1–8. doi:10.1016/j.talanta.2018.07.06530172484
  • Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G. L-cysteine capped ZnS:mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron. 2017;87:693–700. doi:10.1016/j.bios.2016.09.02227631684
  • Tang D, Zhang J, Zhou R, et al. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots. Nanoscale. 2018;10(18):8477–8482. doi:10.1039/c8nr01355a29694472
  • Garcia-Cortes M, Teresa Fernandez-Arguelles M, Costa-Fernandez JM, Sanz-Medel A. Sensitive prostate specific antigen quantification using dihydrolipoic acid surface-functionalized phosphorescent quantum dots. Anal Chim Acta. 2017;987:118–126. doi:10.1016/j.aca.2017.08.00328916035
  • Chang L, Wu H, He X, Chen L, Zhang Y. A highly sensitive fluorescent turn-on biosensor for glycoproteins based on boronic acid functional polymer capped Mn-doped ZnS quantum dots. Anal Chim Acta. 2017;995:91–98. doi:10.1016/j.aca.2017.09.03729126485
  • Gong Y, Fan Z. Room-temperature phosphorescence turn-on detection of DNA based on riboflavin-modulated manganese doped zinc sulfide quantum dots. J Fluoresc. 2016;26(2):385–393. doi:10.1007/s10895-015-1699-626658940
  • Sung Y-M, Gayam SR, Hsieh P-Y, Hsu H-Y, Diau EW-G, Wu S-P. Quinone-modified Mn-doped zns quantum dots for room-temperature phosphorescence sensing of human cancer cells that overexpress NQO1. ACS Appl Mater Interfaces. 2015;7(46):25961–25969. doi:10.1021/acsami.5b0924426540617
  • Kuznetsova VA, Visheratina AK, Ryan A, et al. Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality. 2017;29(8):403–408. doi:10.1002/chir.2271328608629
  • Swift BJF, Baneyx F. Microbial uptake, toxicity, and fate of biofabricated ZnS:Mn nanocrystals. PLoS One. 2015;10(4):e0124916. doi:10.1371/journal.pone.012491625902065
  • Yang Y, Lv S-Y, Yu B, et al. Hepatotoxicity assessment of Mn-doped ZnS quantum dots after repeated administration in mice. Int J Nanomedicine. 2015;10:5787–5796. doi:10.2147/ijn.s8878926396512
  • Lindeque JZ, Matthyser A, Mason S, Louw R, Taute CJF. Metabolomics reveals the depletion of intracellular metabolites in HepG2 cells after treatment with gold nanoparticles. Nanotoxicology. 2018;12(3):251–262. doi:10.1080/17435390.2018.143277929392969
  • Xie J, Dong W, Liu R, Wang Y, Li Y. Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics. Nanotoxicology. 2018;12(1):18–31. doi:10.1080/17435390.2017.141538929251223
  • Falanga A, Mercurio FA, Siciliano A, et al. Metabolomic and oxidative effects of quantum dots-indolicidin on three generations of Daphnia magna. Aquat Toxicol. 2018;198:158–164. doi:10.1016/j.aquatox.2018.03.00129547731
  • Zhang W, Zhao Y, Li F, et al. Zinc oxide nanoparticle caused plasma metabolomic perturbations correlate with hepatic steatosis. Front Pharmacol. 2018;9:57. doi:10.3389/fphar.2018.0005729472859
  • Khoshkam M, Baghdadchi Y, Arezumand R, Ramazani A. Synthesis, characterization and in vivo evaluation of cadmium telluride quantum dots toxicity in mice by toxicometabolomics approach. Toxicol Mech Methods. 2018;28(7):539–546. doi:10.1080/15376516.2018.147163529708463
  • Lee JH, Gulumian M, Faustman EM, Workman T, Jeon K, Yu IJ. Blood biochemical and hematological study after subacute intravenous injection of gold and silver nanoparticles and coadministered gold and silver nanoparticles of similar sizes. Biomed Res Int. 2018;2018:8460910. doi:10.1155/2018/846091030140702
  • Yang RH, Chang LW, Wu J-P, et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect. 2007;115(9):1339–1343. doi:10.1289/ehp.1029017805425
  • Yaghini E, Turner H, Pilling A, Naasani I, MacRobert AJ. In vivo biodistribution and toxicology studies of cadmium-free indium-based quantum dot nanoparticles in a rat model. Nanomedicine. 2018;14(8):2644–2655. doi:10.1016/j.nano.2018.07.00930048815
  • Gao X, Pujos-Guillot E, Sébédio JL. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Anal Chem. 2010;82(15):6447–6456. doi:10.1021/ac100655220669995
  • Su Y, Peng F, Jiang Z, et al. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials. 2011;32(25):5855–5862. doi:10.1016/j.biomaterials.2011.04.06321601920
  • Ugbogu EA, Ude VC, Elekwa I, Arunsi UO, Uche-Ikonne C, Nwakanma C. Toxicological profile of the aqueous-fermented extract of Musa paradisiaca in rats. Avicenna J Phytomed. 2018;8(6):478–487.30456195
  • Zhang Z, Liang ZC, Zhang JH, et al. Nano-sized TiO2 (nTiO(2)) induces metabolic perturbations in physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions. Ecotoxicol Environ Saf. 2018;154:108–117. doi:10.1016/j.ecoenv.2018.02.01229454986
  • Jin C, Liu Y, Sun L, et al. Metabolic profiling reveals disorder of carbohydrate metabolism in mouse fibroblast cells induced by titanium dioxide nanoparticles. J Appl Toxicol. 2013;33(12):1442–1450. doi:10.1002/jat.280822996321
  • Jin H, Qiao F, Chen L, Lu C, Xu L, Gao X. Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. J Proteome Res. 2014;13(9):4091–4103. doi:10.1021/pr500483z25162382
  • Feng J, Liu H, Zhang L, Bhakoo K, Lu L. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids. Nanotechnology. 2010;21(39):395101. doi:10.1088/0957-4484/21/39/39510120820093
  • Zhang B, Zhang H, Du C, et al. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. Water Res. 2017;114:135–143. doi:10.1016/j.watres.2017.02.04628237781
  • Hadrup N, Lam HR, Loeschner K, Mortensen A, Larsen EH, Frandsen H. Nanoparticulate silver increases uric acid and allantoin excretion in rats, as identified by metabolomics. J Appl Toxicol. 2012;32(11):929–933. doi:10.1002/jat.277922610381