557
Views
37
CrossRef citations to date
0
Altmetric
Original Research

Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity

, &
Pages 6679-6690 | Published online: 19 Aug 2019

References

  • Patra JK, Baek K-H. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. 2014;2014:Article ID 417305, 12 pages. doi:10.1155/2014/417305
  • Veerasamy R, Xin TZ, Gunasagaran S, et al. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc. 2011;15(2):113–120. doi:10.1016/j.jscs.2010.06.004
  • Moodley JS, Krishna SBN, Pillay K, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci. 2018;9(1):015011.
  • Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2019;124:148–154. doi:10.1016/j.ijbiomac.2018.11.10130447360
  • Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem. 2019;9(1):1–9. doi:10.1007/s40097-018-0291-4
  • Yu C, Tang J, Liu X, Ren X, Zhen M, Wang L. Green biosynthesis of silver nanoparticles using Eriobotrya japonica (Thunb.) leaf extract for reductive catalysis. Materials. 2019;12(1):189. doi:10.3390/ma12010189
  • Xu S, Chen S, Zhang F, et al. Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through intermolecular interaction-induced self-assembly. Mater Des. 2016;95:107–118. doi:10.1016/j.matdes.2016.01.104
  • Rasheed T, Bilal M, Iqbal HMN, Li C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B Biointerfaces. 2017;158:408–415. doi:10.1016/j.colsurfb.2017.07.02028719862
  • Verma N, Bansal MC, Kumar V. Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. Bioresources. 2011;6(2):1505–1519.
  • Samaddar P, Ok YS, Kim K-H, Kwon EE, Tsang DC. Synthesis of nanomaterials from various wastes and their new age applications. J Clean Prod. 2018;197:1190–1209. doi:10.1016/j.jclepro.2018.06.262
  • Hadrich F, Arbi ME, Boukhris M, Sayadi S, Cherif S. Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J Oleo Sci. 2014;63(11):1177–1183.25354878
  • Gunn J, Che CT, Farnsworth N. Chapter 33 - diabetes and natural products In: Watson RR, Preedy VR, editors. Bioactive Food as Dietary Interventions for Diabetes. San Diego: Academic Press; 2013:381–394.
  • El-Feky AM, Elbatanony MM, Mounier MM. Anti-cancer potential of the lipoidal and flavonoidal compounds from Pisum sativum and Vicia faba peels. Egypt J Basic Appl Sci. 2018;5(4):258–264. doi:10.1016/j.ejbas.2018.11.001
  • Patra JK, Baek K-H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int J Nanomedicine. 2015;10:7253.26664116
  • Basavegowda N, Mishra K, Thombal RS, Kaliraj K, Lee YR. Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1, 3-thiazolidin-4-ones. Catal Letters. 2017;147(10):2630–2639. doi:10.1007/s10562-017-2168-4
  • Patra JK, Das G, Kumar A, Ansari A, Kim H, Shin H-S. Photo-mediated biosynthesis of silver nanoparticles using the nonedible accrescent fruiting calyx of Physalis peruviana L. fruits and investigation of its radical scavenging potential and cytotoxicity activities. J Photochem Photobiol B. 2018;188:116–125. doi:10.1016/j.jphotobiol.2018.08.00430266015
  • Butala MA, Kukkupuni SK, Venkatasubramanian P, Vishnuprasad CN. An ayurvedic anti‐diabetic formulation made from Curcuma longa L. and Emblica officinalis L. inhibits α‐amylase, α‐glucosidase, and starch digestion, in vitro. Starch‐Stärke. 2018;70(5–6):1700182. doi:10.1002/star.201700182
  • Faedmaleki F, Shirazi FH, Salarian -A-A, Ashtiani HA, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res. 2014;13(1):235.24734076
  • Diao W-R, Hu Q-P, Feng -S-S, Li W-Q, Xu J-G. Chemical composition and antibacterial activity of the essential oil from green huajiao (Zanthoxylum schinifolium) against selected foodborne pathogens. J Agric Food Chem. 2013;61(25):6044–6049. doi:10.1021/jf400785623758080
  • Kubo I, Fujita K-I, Kubo A, Nihei K-I, Ogura T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J Agric Food Chem. 2004;52(11):3329–3332. doi:10.1021/jf035418615161192
  • He Y, Wei F, Ma Z, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 2017;7(63):39842–39851. doi:10.1039/C7RA05286C
  • He Y, Li X, Zheng Y, et al. A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New J Chem. 2018;42(4):2882–2888. doi:10.1039/C7NJ04224H
  • Mousavi B, Tafvizi F, Zaker Bostanabad S. Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells Nanomed Biotechnol. 2018;46(sup 1):499–510.
  • Jegadeeswaran P, Shivaraj R, Venckatesh R. Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Dig J Nanomater Biostruct. 2012;7(3):991–998.
  • Patra JK, Baek K-H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol. 2017;8:167. doi:10.3389/fmicb.2017.0016728261161
  • Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Light induced green synthesis of silver nanoparticles using aqueous extract of Prunus amygdalus. Green Sustainable Chem. 2016;6(01):26. doi:10.4236/gsc.2016.61003
  • Sastry M, Mayya K, Bandyopadhyay K. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A Physicochem Eng Asp. 1997;127(1–3):221–228. doi:10.1016/S0927-7757(97)00087-3
  • Coates J. Interpretation of infrared spectra, a practical approach In: Encyclopedia of Analytical Chemistry, RA. Meyers (Ed.). John Wiley & Sons Ltd, Chichester; 2000:10881–10882.
  • Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod. 2013;46:132–137. doi:10.1016/j.indcrop.2013.01.019
  • Morris MC, McMurdie HF, Evans EH, Paretzkin B, Parker HS, Panagiotopoulos NC, Hubbard CR. Standard X-ray diffraction powder patterns, National Bureau of Standards monograph 25 section 18 (Library of congress catalog card number: 53-61386) In: National Bureau of Standards. Washington, DC, USA: U.S. Department of Commerce, Malcolm Baldrige, Secretary, National Bureau of Standards, Ernest Ambler, Director; 1981:2.
  • Adedapo AA, Jimoh FO, Afolayan AJ, Masika PJ. Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complement Altern Med. 2008;8(1):54. doi:10.1186/1472-6882-8-6218817535
  • Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012;15(1):141–183. doi:10.18433/J35S3K22365095
  • Balan K, Qing W, Wang Y, et al. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv. 2016;6(46):40162–40168. doi:10.1039/C5RA24391B
  • Yousefi A, Yousefi R, Panahi F, et al. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol. 2015;78:46–55. doi:10.1016/j.ijbiomac.2015.03.06025843662
  • Faedmaleki F, Shirazi FH, Salarian AA, Ashtiani HA, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res. 2014;13(1):235–242.24734076
  • Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol B. 2019;193:1–7. doi:10.1016/j.jphotobiol.2019.01.00830776484
  • Patil Shriniwas P, T KS. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Rep. 2017;10:76–81. doi:10.1016/j.bbrep.2017.03.00229114571