88
Views
7
CrossRef citations to date
0
Altmetric
Original Research

A carbohydrate mimetic peptide modified size-shrinkable micelle nanocluster for anti-tumor targeting and penetrating drug delivery

, , , , , , & show all
Pages 7339-7352 | Published online: 09 Sep 2019

References

  • Caragher SP, Sachdev S, Ahmed AU. Radiotherapy and glioma stem cells: searching for chinks in cellular armor. Curr Stem Cell Rep. 2017;3(4):348–357. doi:10.1007/s40778-017-0102-829354390
  • Singh RK, Singh DP, Tiwari SP, et al. Targeted therapies for cancer treatment. J Pharm Res. 2011;4(2):312–316.
  • Chen M, Lin Z, Ling M. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano. 2015;10(1):93–101. doi:10.1021/acsnano.5b0504326592739
  • Block JB. Cancer chemotherapy reports. CA Cancer J Clin. 2010;23(3):182–183.
  • Steward LT, Gao F, Taylor MA, Margenthaler JA. Impact of radiation therapy on survival in patients with triple-negative breast cancer. Oncol Lett. 2014;7(2):548–552. doi:10.3892/ol.2013.170024396485
  • Imai E. Gene therapy for renal diseases: its potential and limitation. J Am Soc Nephrol. 2003;14(4):1102–1104. doi:10.1097/01.asn.0000067655.48829.d512660347
  • Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop. 2010;115(1–2):55–68. doi:10.1016/j.actatropica.2009.10.02319900395
  • Nguyen KT. Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomed Nanotechnol. 2011;2(5). doi:10.4172/2157-7439.1000103e
  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61(19–20):2549–2559. doi:10.1007/s00018-004-4153-515526161
  • Tanford C. Micelle shape and size. J Phys Chem. 1972;76(21):3020–3024. doi:10.1021/j100665a018
  • Rapoport N. Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release. 2003;91(1–2):85–95.12932640
  • Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1–3):191–202.11389998
  • Sun X, Wang G, Zhang H, et al. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano. 2018;12(6):6179–6192. doi:10.1021/acsnano.8b0283029847730
  • Le Garrec D, Gori S, Luo L, et al. Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release. 2004;99(1):83–101. doi:10.1016/j.jconrel.2004.06.01815342183
  • Muley P, Kumar S, El Kourati F, Kesharwani SS, Tummala H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int J Pharmaceut. 2016;500(1–2):32–41. doi:10.1016/j.ijpharm.2016.01.005
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–664. doi:10.1038/nrclinonc.2010.13920838415
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliver Rev. 2011;63(3):136–151. doi:10.1016/j.addr.2010.04.009
  • Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–419. doi:10.1016/j.ejpb.2008.11.01019070661
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–1915. doi:10.1021/nl900031y19344179
  • Stirland DL, Nichols JW, Miura S, Bae YH. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release. 2013;172(3):1045–1064. doi:10.1016/j.jconrel.2013.09.02624096014
  • Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108–121. doi:10.1016/j.jconrel.2016.11.01527871992
  • Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release. 2014;190:451–464. doi:10.1016/j.jconrel.2014.03.05724794900
  • Jain RK, McKee T, Pluen A, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003;9(6):796–800. doi:10.1038/nm87912754503
  • Liang H, Ren X, Qian J, et al. Size-shifting micelle nanoclusters based on a cross-linked and pH-sensitive framework for enhanced tumor targeting and deep penetration features. Acs Appl Mater Inter. 2016;8(16):10136–10146. doi:10.1021/acsami.6b00668
  • Shingo H, Kazuhiro S, Shibata TK, et al. Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci U S A. 2011;108(49):19587–19592. doi:10.1073/pnas.110505710822114188
  • Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Bio. 2005;6(6):449–461. doi:10.1038/nrm166115928709
  • Tsu-Yao C, Ming-Shiang W, Jaw-Town L, et al. Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer Am Cancer Soc. 2012;118(23):5757.
  • de Graauw M, van Miltenburg MH, Schmidt MK, et al. Annexin A1 regulates TGF- signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci. 2010;107(14):6340–6345. doi:10.1073/pnas.091336010720308542
  • Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer. 2005;5(6):436–446. doi:10.1038/nrc162715928674
  • Simon MA, Enrico C, Mario P, et al. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 2010;185(10):6317–6328. doi:10.4049/jimmunol.100109520962261
  • Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Res. 2002;54(1):135–147. doi:10.1016/S0169-409X(01)00245-9
  • Peisheng X, Kirk EAV, Yihong Z, Murdoch WJ, Maciej R, Youqing S. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew Chem Int Edit. 2010;46(26):4999–5002.
  • D’Souza SS, Deluca PP. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 2005;6(2):E323–E328. doi:10.1208/pt06024216353991
  • Yu DH, Liu YR, Luan X, et al. IF7-conjugated nanoparticles target Annexin 1 of tumor vasculature against P-gp mediated multidrug resistance. Bioconjugate Chem. 2015;26(8):1702. doi:10.1021/acs.bioconjchem.5b00283
  • Arakawa T, Kita Y, Koyama AH. Solubility enhancement of gluten and organic compounds by arginine. Int J Pharm. 2008;355(1):220–223. doi:10.1016/j.ijpharm.2007.12.00918242019
  • Tripathi M, Kohli DV, Uppadhyay RK. Enhancement of solubility and dissolution of indomethacin and phenylbutazone by cholic and deoxycholic acid conjugates. Drug Dev Commun. 2008;18(1):135–141.
  • Yangyang Z. Qingyan, et al. Ratiometric fluorescent detection of acidic pH in lysosome with carbon nanodots. Chin Chem. 2017;28(10):1969–1974. doi:10.1016/j.cclet.2017.07.027
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5(4):707–715. doi:10.1039/B811923F
  • Tu ZC, Ge LQ, Li JB, Ou-Yang ZC. Elasticity of polymer vesicles by osmotic pressure: an intermediate theory between fluid membranes and solid shells. Phys Rev E. 2005;72(2):21806. doi:10.1103/PhysRevE.72.021806
  • Hedrick MM, Jun Kyung C, Denton AR. Structure and osmotic pressure of ionic microgel dispersions. J Chem Phys. 2015;142(3):511–931. doi:10.1063/1.4905574
  • Bhattacharyya S, Mulherkar N, Chandran K. Endocytic pathways involved in filovirus entry: advances, implications and future directions. Viruses. 2012;4(12):3647–3664.23342373
  • Nunes R, Kiang CL, Sorrentino D, Berk PD. Albumin-receptor’ uptake kinetics do not require an intact lobular architecture and are not specific for albumin. J Hepatol. 1988;7(3):293. doi:10.1016/S0168-8278(88)80001-12853188
  • Geeta M, Hsiao AY, Marylou I, Luker GD, Shuichi T. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164(2):192–204. doi:10.1016/j.jconrel.2012.04.04522613880
  • Tianjiao J, Yanping D, Ying Z, et al. Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery. Adv Mater. 2015;27(11):1865–1873. doi:10.1002/adma.20140471525651789
  • Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B. 2018;1(173):581–590.
  • Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv. 2018;11(15):1127–1142. doi:10.1080/17425247.2018.1537261