172
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Development of a bioaffinity SPR immunosensor based on functionalized graphene oxide for the detection of pregnancy-associated plasma protein A2 in human plasma

, , , &
Pages 6735-6748 | Published online: 22 Aug 2019

References

  • United Nations, Department of Economic and Social Affairs, Population Division (2017). World population ageing, 2018 (ST/ESA/SER.A/408).
  • Available from: https://www.cia.gov/library/publications/the-world-factbook/fields/356rank.html. Accessed 802, 2019
  • Crosley EJ, Durland U, Seethram K, et al. First-trimester levels of pregnancy-associated plasma protein A2 (PAPP-A2) in the maternal circulation are elevated in pregnancies that subsequently develop preeclampsia. Reprod Sci. 2014;21:754–760. doi:10.1177/193371911351253224336677
  • Nishizawa H, Pryor-Koishi K, Suzuki M, et al. Increased levels of pregnancy-associated plasma protein-A2 in the serum of pre-eclamptic patients. Mol Hum Reprod. 2008;14:595–602. doi:10.1093/molehr/gan05418805800
  • Munnangi S, Gross SJ, Mudankamar R, et al. Pregnancy associated plasma protein-A2: a novel biomarker for down syndrome. Placenta. 2014;35:900–906. doi:10.1016/j.placenta.2014.05.00425154785
  • Buimer M, Keijser R, Jebbink JM, et al. Seven placental transcripts characterize HELLP-syndrome. Placenta. 2008;29:444–453. doi:10.1016/j.placenta.2008.02.00718374411
  • Wagner PK, Otomo A, Christians JK. Regulation of pregnancy-associated plasma protein A2 (PAPPA2) in a human placental trophoblast cell line (BeWo). Reprod Biol Endocrinol. 2011;9:48–54. doi:10.1186/1477-7827-9-4821496272
  • Page NM, Butlin DJ, Lomthaisong K, et al. The characterization of pregnancy associated plasma protein-E and the identification of an alternative splice variant. Placenta. 2001;22:681–687. doi:10.1053/plac.2001.070911597188
  • Kloverpris S, Gaidamauskas E, Rasmussen LCV, et al. A robust immunoassay for pregnancyassociated plasma protein-A2 based on analysis of circulating antigen: establishment of normal ranges in pregnancy. Mol Hum Reprod. 2013;19:756–763. doi:10.1093/molehr/gat04723804707
  • Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349:165–168. doi:10.1126/science.aab205126160941
  • Singh M, Holzinger M, Tabrizian M, et al. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J Am Chem Soc. 2015;137:2800–2803. doi:10.1021/ja511512m25679322
  • Afkhami A, Hashemi P, Bagheri H, et al. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens Bioelectron. 2017;93:124–131. doi:10.1016/j.bios.2016.09.05927665169
  • Subramanian P, Barka-Bouaifel F, Bouckaert J, et al. Graphene-coated surface plasmon resonance interfaces for studying the interactions between bacteria and surfaces. ACS Appl Mater Interfaces. 2014;6:5422–5431. doi:10.1021/am405541z24433135
  • Chiu NF, Yang CD, Chen CC, et al. Stepwise control of reduction of graphene oxide and quantitative real-time evaluation of residual oxygen content using EC-SPR for a label-free electrochemical immunosensor. Sens Actuators B Chem. 2018;258:981–990. doi:10.1016/j.snb.2017.11.187
  • Zhang H, Sun Y, Gao S, et al. A novel graphene oxide based surface plasmon resonance biosensor for immunoassay. Small. 2013;9:2537. doi:10.1002/smll.20120295823436747
  • Chiu NF, Huang TY. Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors. Sens Actuators B Chem. 2014;197:35–42. doi:10.1016/j.snb.2014.02.033
  • Chiu NF, Kuo CT, Lin TL, et al. Ultra-high sensitivity of the non-immunological affinity of graphene oxide-peptide-based surface plasmon resonance biosensors to detect human chorionic gonadotropin. Biosens Bioelectron. 2017;94:351–357. doi:10.1016/j.bios.2017.03.00828319902
  • Chiu NF, Chen CC, Yang CD, et al. Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res Lett. 2018;13:152–162. doi:10.1186/s11671-018-2565-729767347
  • Stebunov YV, Aftenieva OA, Arsenin AV, et al. Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl Mater Interfaces. 2015;7:21727–21734. doi:10.1021/acsami.5b0442726358000
  • Peng S, Liu C, Fan X. Surface modification of graphene oxide by carboxyl-group: preparation, characterization, and application for proteins immobilization. Integr Ferroelectr. 2015;163:42–53. doi:10.1080/10584587.2015.1040328
  • Yang L, Li X, Yan S, et al. Single-walled carbon nanotubes–carboxyl-functionalized graphene oxide-based electrochemical DNA biosensor for thermolabile hemolysin gene detection. Anal Methods. 2015;7:5303–5310. doi:10.1039/C5AY01062D
  • Chiu NF, Fan SY, Yang CD, et al. Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection. Biosens Bioelectron. 2017;89:370–376. doi:10.1016/j.bios.2016.06.07327396822
  • Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–212. doi:10.1007/s12274-008-8021-820216934
  • Becheru DF, Vlăsceanu GM, Banciu A, et al. Optical graphene-based biosensor for nucleic acid detection; influence of graphene functionalization and ionic strength. Int J Mol Sci. 2018;19:3230. doi:10.3390/ijms19103230
  • Bocková M, Song XC, Gedeonová E, et al. Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples. Anal Bioanal Chem. 2016;408:7265–7269. doi:10.1007/s00216-016-9664-z27299774
  • Ni J, Pignatello JJ, Xing B. Adsorption of aromatic carboxylate ions to black carbon (Biochar) is accompanied by proton exchange with water. Environ Sci Technol. 2011;45:9240–9248. doi:10.1021/es201859j21999243
  • Megias-Alguacil D, Tervoort E, Cattin C, et al. Contact angle and adsorption behavior of carboxylic acids on α-Al2O3 surfaces. J Colloid Interface Sci. 2011;353:512–518. doi:10.1016/j.jcis.2010.09.08720970145
  • Ritzefeld M, Sewald N. Real-time analysis of specific protein-DNA interactions with surface plasmon resonance. J Amino Acids. 2012;2012:816032.22500214
  • Chiu N-F, Lin T-L, Kuo C-T. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sens Actuators B Chem. 2018;265:264–272. doi:10.1016/j.snb.2018.03.070
  • Verma S, Dutta RK. A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv. 2015;5:77192–77203. doi:10.1039/C4RA14244F
  • Du Z, Dou R, Zu M, et al. Nitric oxide-generating L-cysteine-grafted graphene film as a blood-contacting biomaterial. Biomater Sci. 2016;4:938–942. doi:10.1039/C6BM00074F27111404
  • Hadi A, Zahirifar J, Karimi-Sabet J, et al. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: the coupled effect of ultrasound and wedging nanoparticles. Ultrason Sonochem. 2018;44:204–214. doi:10.1016/j.ultsonch.2018.02.02829680604
  • Wang X, Sun Q, Cui C, et al. Anti-HER2 functionalized graphene oxide as survivin-siRNA delivery carrier inhibits breast carcinoma growth in vitro and in vivo. Drug Des Devel Ther. 2018;12:2841–2855. doi:10.2147/DDDT.S169430
  • Chiu NF, Tu YC, Huang TY. Enhanced sensitivity of anti-symmetrically structured surface plasmon resonance sensors with zinc oxide intermediate layers. Sensors. 2014;14:170–187. doi:10.3390/s140100170
  • Rossi C, Homand J, Bauche C, et al. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. J Biochem. 2003;42:15273–15283. doi:10.1021/bi035336a
  • Zhang F, Wang Z, Wang D, et al. Optical limiting of carboxyl–graphene oxide. IEEE J Sel Top Quant Electron. 2017;23:9000106. doi:10.1109/JSTQE.2016.2543140
  • Zhao X, Ma K, Jiao T, et al. Fabrication of hierarchical layer-by-layer assembled diamond-based core-shell nanocomposites as highly efficient dye absorbents for wastewater treatment. Sci Rep. 2017;7:44076. doi:10.1038/srep4407628272452
  • Tu Q, Tian C, Ma T, et al. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Colloids Surf B Biointerfaces. 2016;141:196–205. doi:10.1016/j.colsurfb.2016.01.04626852103
  • Wirde M, Gelius U, Nyholm L. Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry. Langmuir. 1999;15:6370–6378. doi:10.1021/la9903245
  • Hubert J, Poleunis C, Delcorte A, et al. Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer. 2013;54:4085e4092. doi:10.1016/j.polymer.2013.05.068
  • Abdulrazzaq O, Bourdo SE, Saini V, et al. Tuning the work function of polyaniline via camphorsulfonic acid: an X-ray photoelectron spectroscopy investigation. RSC Adv. 2015;5:33–40. doi:10.1039/C4RA11832D
  • Chiu NF, Huang TY, Lai HC, et al. Graphene oxide-based SPR biosensor chip for immunoassay applications. Nanoscale Res Lett. 2014;9:445–451. doi:10.1186/1556-276X-9-44525232298
  • Drescher DG, Ramakrishnan NA, Drescher MJ. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol. 2009;493:323–343. doi:10.1007/978-1-59745-523-7_1418839357