617
Views
126
CrossRef citations to date
0
Altmetric
Original Research

Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea

, , , , , , , , & show all
Pages 6217-6229 | Published online: 06 Aug 2019

References

  • Singh T, Shukla S, Kumar P, Wahla V, Bajpai V, Rather I. Application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:1–7. doi:10.3389/fmicb.2017.0000128197127
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications, and toxicities. Arabian J Chem. 2017;1:1–24.
  • Haider A, Kang IK. Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv Mater Sci Eng. 2015;1–16. doi:10.1155/2015/165257
  • Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications, and perspectives. Adv Nat Sci. 2013;4:1–20.
  • Shameli K, Ahmad MB, Zamanian A, et al. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomedicine. 2012;7:5603–5610. doi:10.2147/IJN.S3063123341739
  • Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci. 2016;9(3):217–227. doi:10.1016/j.jrras.2015.10.002
  • Abou El-Nour KM, Eftaiha A, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135–140. doi:10.1016/j.arabjc.2010.04.008
  • Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and viricidal compounds. J Nanobiotechnol. 2011;9:30. doi:10.1186/1477-3155-9-30
  • Marambio-Jones C, Hoek EV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–1551. doi:10.1007/s11051-010-9900-y
  • Lara H, Ayala-Núñez N, Ixtepan Turrent L, Rodrĺguez Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2010;26:615–621. doi:10.1007/s11274-010-0385-8
  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009;5:382–386. doi:10.1016/j.nano.2009.06.00519616127
  • Jogee PS, Ingle AB, Gupta IR, Bonde SR, Rai MK. Detection and management of mycotoxigenic fungi in nuts and dry fruits. Acta Hortic. 2012;963:69. doi:10.17660/ActaHortic.2012.963.10
  • Shanmuganathan R, Muthukumar H, Pugazhendhi A, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res. 2018;25:10362–10370. doi:10.1007/s11356-017-9367-9
  • Pugazhendhi A, Prabakar D, Jacob J, Karuppusamy I, Saratale R. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2017;114:41–45. doi:10.1016/j.micpath.2017.11.01329146498
  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72. doi:10.1016/j.micpath.2018.02.00829427709
  • Jacob J, John M, Jacob A, et al. Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract. Mater Res Express. 2019;4(4):1–27.
  • Khan S, Khan S, Kamal T, Yasir M, Asiri A. Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int J Biol Macromol. 2016;91:744–751. doi:10.1016/j.ijbiomac.2016.06.01827287771
  • Kamal T, Islam M, Khan S, Asiri A. Adsorption and photo-degradation assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int J Biol Macromol. 2015;584–590. doi:10.1016/j.ijbiomac.2015.08.06026321421
  • Kamal T, Anwar Y, Khan S, Chani M, Asiri A. Dye adsorption and bactericidal properties of TiO2/Chitosan coating layer. Carbohydr Polym. 2016;148:153–160. doi:10.1016/j.carbpol.2016.04.04227185126
  • Khan S, Ali F, Kamal T, Anwar Y, Asiri A, Seo J. CuO embedded chitosan spheres as an antibacterial adsorbent for dyes. Int J Biol Macromol. 2016;88:113–119. doi:10.1016/j.ijbiomac.2016.03.02626993528
  • Ali F, Khan S, Kamal T, Anwar Y, Alamry K, Asiri A. Bactericidal and catalytic performance of green nanocomposite based on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere. 2017;188:588–598. doi:10.1016/j.chemosphere.2017.08.11828917211
  • Ahmed M, Kamal T, Khan S, et al. Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr Nanosci. 2016;12(5):1–25.
  • Kavitha T, Haider S, Kamal T, Ul-Islam M. Thermal decomposition of the metal complex precursor as a route to the synthesis of Co3O4 nanoparticles: antibacterial activity and mechanism. J Alloys Compd. 2017;704:296–302. doi:10.1016/j.jallcom.2017.01.306
  • Pugazhendhi A, Edison T, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539(1–2):104–111. doi:10.1016/j.ijpharm.2018.01.03429366941
  • Oves M, Aslam M, Rauf M, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng. 2018;89:429–443. doi:10.1016/j.msec.2018.03.035
  • Ramkumar V, Pugazhendhi A, Gopalakrishnan K, et al. Biofabrication and characterization of silver nanoparticles using the aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep. 2017;14:1–7. doi:10.1016/j.btre.2017.02.001
  • Saratale G, Saratale R, Benelli G, et al. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci. 2017;28:1709–1727. doi:10.1007/s10876-017-1179-z
  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–8918. doi:10.3390/molecules1610889422024958
  • Huy T, Thanha N, Thuya N, Chunga P, Hungb P, Lec A, Hanha N. Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus. Journal of Virological Methods 2017; 241: 52–57.
  • Dondaa R, Kudlea K, Alwalaa J, Miryalaa A, Sreedharb B, Rudraa P. Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity. Int J Curr Sci. 2013;7:1–8. ISSN 2250–1770.
  • Rajesh S, Patric Raja D, Rathi JM, Sahayaraj K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum, Bionanoparticle for phytopathogen management. JBiopest. 20125: 119–128.
  • Abdelmohsen U, Cheng C, Viegelmann C, et al. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge-associated-actinokineospora sp. EG49. Mar Drugs. 2014;12:1220–1244. doi:10.3390/md1203122024663112
  • Abdelhafez O, Fawzy M, Fahim J, et al. Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats. PLoS One. 2018;13(8):1–18. doi:10.1371/journal.pone.0202362
  • Raheem D, Tawfike A, Abdelmohsen U, Edrada-Ebel R, Fitzsimmons-Thoss V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci Rep. 2019;9:1–13. doi:10.1038/s41598-018-37186-230626917
  • Sethi P. Activity of turbinaria ornata (Turner) J. Agade against Blue Tongue Virus (Btv). IOSR J Pharm. 2016;6(7):93–95. Version. 3. doi:10.9790/3013-067039395
  • Andrighetti-Fröhner R, Antonio V, Creczynski-Pasa B, Barardi M, Simões O. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz, Rio De Janeiro. 2003;98(6):843–848. doi:10.1590/S0074-02762003000600023
  • Jose A, Abirami T, Kavitha V, Sellakilli R, Karthikeyan J. Green synthesis of silver nanoparticles using Asystasia gangetica leaf extract and its antibacterial activity against gram-positive and gram-negative bacteria. J Pharmacogn Phytochem. 2018;7(1):2453–2457.
  • Thomas B, Prasad A, Vithiya S. Evaluation of the antioxidant, antibacterial and photocatalytic effect of silver nanoparticles from methanolic extract of Coleus vettiveroids-an endemic species. J Nanostruct. 2018;8(2):179–190.
  • Kumar R, Ghoshal G, Jain A, Goyal M. Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) Plants extract: exploring its antimicrobial and catalytic activities. J Nanomed Nanotechnol. 2017;8(4):1–8.
  • Erjaee H, Rajaian H, Nazifi S. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Adv Nat Sci. 2017;8:1–9.
  • Avilala J, Golla N. Antibacterial and antiviral properties of silver nanoparticles synthesized by marine actinomycetes. Int J Pharm Sci Res. 2019;10(3):1223–1228.
  • Jaidev R, Narasimha G. Fungal mediated biosynthesis of silver nanoparticles characterization and antimicrobial activity. Colloids Surf B. 2010;81:430–433. doi:10.1016/j.colsurfb.2010.07.033
  • Shankar S, Rai A, Ahmad A, Sastry M. Rapid synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest J Nanomater Biostruct. 2004;5:427–432.
  • Gandhiraj V, Kumar. K, Madhusudhanan J, Sandhya J. Antitumor activity of biosynthesized silver nanoparticles from leaves of Momordica charantia against MCF-7 cell line. Int J ChemTech Res. 2015;8(7):351–362.
  • Galdiero S, Falanga A, Cantisani M, Ingle A, Galdiero M, Rai M. Silver nanoparticles as novel antibacterial and antiviral agents. Front Nanomedical Re. 2014:3;565–594.
  • Fatima M, Zaidi N, Amraiz D, Afzal F. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza A virus. J Microbiol Biotechnol. 2016;26(1):151–159. doi:10.4014/jmb.1508.0802426403820
  • Kwon J, Kim H, Yoon Y, et al. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. Virol.J. 2010;7:307. doi:10.1186/1743-422X-7-30721062499
  • Ko C, Wei L, Chiou F. The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells. J Ethnopharmacol. 2006;107:205–210. doi:10.1016/j.jep.2006.03.00416621378