371
Views
34
CrossRef citations to date
0
Altmetric
Original Research

Surface-Engineered Super-Paramagnetic Iron Oxide Nanoparticles For Chromium Removal

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 8105-8119 | Published online: 09 Oct 2019

References

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–164. doi:10.1007/978-3-7643-8340-4_622945569
  • Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–182. doi:10.1093/bmb/ldg03214757716
  • Owlad M, Aroua MK, Daud WAW, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 2009;200(1):59–77. doi:10.1007/s11270-008-9893-7
  • Barnowski C, Jakubowski N, Stuewer D, Broekaert JAC. Speciation of chromium by direct coupling of ion exchange chromatography with ICP-MS. At Spectrom. 1997;1155(10):1155–1161. doi:10.1039/a702120h
  • Gil RA, Cerutti S, Gásquez JA, Olsina RA, Martinez LD. Preconcentration and speciation of chromium in drinking water samples by coupling of on-line sorption on activated carbon to ETAAS determination. Talanta. 2006;68(4):1065–1070. doi:10.1016/j.talanta.2005.06.06918970432
  • Katz SA, Slem H. The Biological and Environmental Chemistry of Chromium. New York: VCH; 1994.
  • Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut. 2000;107(3):263–283. doi:10.1016/s0269-7491(99)00168-215092973
  • Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–573.
  • Erbil HY. Surface Chemistry of Solid and Liquid Interfaces. 1st ed. Oxford: Blackwell Publishing; 2006.
  • Wu JH, Shao FQ, Han SY, et al. Shape-controlled synthesis of well-dispersed platinum nanocubes supported on graphitic carbon nitride as advanced visible-light-driven catalyst for efficient photoreduction of hexavalent chromium. J Colloid Interface Sci. 2019;1(535):41–49. doi:10.1016/j.jcis.2018.09.080
  • Shao FQ, Feng JJ, Lin XX, Jiang LY, Wang AJ. Simple fabrication of AuPd@Pd core-shell nanocrystals for effective catalytic reduction of hexavalent chromium. Appl Catalysis B. 2017;208:128–134. doi:10.1016/j.apcatb.2017.02.051
  • Wu JH, Shao FQ, Luo XQ, Xu HJ, Wang AJ. Pd nanocones supported on g-C3N4: an efficient photocatalyst for boosting catalytic reduction of hexavalent chromium under visible-light irradiation. Appl Surf Sci. 2019;471:935–942. doi:10.1016/j.apsusc.2018.12.075
  • Li DN, Shao FQ, Feng JJ, Wei J, Zhang QL, Wang AJ. Uniform Pt@Pd nanocrystals supported on N-doped reduced graphene oxide as catalysts for effective reduction of highly toxic chromium(VI). Mater Chem Phys. 2018;205:64–71. doi:10.1016/j.matchemphys.2017.10.074
  • Hu LY, Chen LX, Liu MT, Wang AJ, Wu LJ, Feng JJ. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction. J Colloid Interface Sci. 2017;493:94–102. doi:10.1016/j.jcis.2016.12.06828088571
  • Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010;3(1):32–33. doi:10.4103/0974-2077.6330120606992
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2017. doi:10.1016/j.arabjc.2017.05.011
  • Goya GF, Berquo TS, Fonseca FC, Morales MP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys. 2003;94(5):3520–3528. doi:10.1063/1.1599959
  • Justin C, Philip SA, Samrot AV. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl Nanosci. 2017;7(7):463–475. doi:10.1007/s13204-017-0583-x
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.01215626447
  • Shubayev VI, Pisanic TR II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–477. doi:10.1016/j.addr.2009.03.00719389434
  • Sethi M, Chakarvarti SK. Hyperthermia Techniques for cancer treatment: a Review. Int J Pharmtech Res. 2015;8(6):292–299.
  • Kalber TL, Ordidge KL, Southern P, et al. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2016;11:1973–1983. doi:10.2147/IJN.S9425527274229
  • Lee H, Yu MK, Park S, et al. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc. 2007;129(42):12739–12745. doi:10.1021/ja072210i17892287
  • Justin C, Samrot AV, Sahithya CS, Bhavya KS, Saipriya C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One. 2018;13(7):1–18. doi:10.1371/journal.pone.0200440
  • Heidari F, Bahrololoom ME, Vashaee D, Tayebi L. In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceramics Int. 2015;41(2):3094–3100. doi:10.1016/j.ceramint.2014.10.153
  • Babic M, Horák D, Trchová M, et al. Poly (L-lysine)-modified iron oxide nanoparticles for stem cell labelling. Bioconjugate Chem. 2008;19(3):740–750. doi:10.1021/bc700410z
  • Samrot AV, Senthilkumar P, Rashmitha S, Veera P, Sahithya CS. Azadirachta indica influenced biosynthesis of super-paramagnetic iron-oxide nanoparticles and their applications in tannery water treatment and X-ray imaging. J Nanostructure Chem. 2018;8(3):343–351. doi:10.1007/s40097-018-0279-0
  • No HK, Meyers SP. Application of chitosan for treatment of wastewaters. Rev Environ Contam Toxico. 2000;163:1–27.
  • Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol. 2004;38(1):43–74. doi:10.1016/j.seppur.2003.10.004
  • Rojas G, Silva J, Flores JA, Rodriguez A, Ly M, Maldonado H. Adsorption of chromium onto cross-linked chitosan. Sep Purif Technol. 2005;44(1):31–36. doi:10.1016/j.seppur.2004.11.013
  • Stover NM. Diphenylcarbazide as a test for chromium. J Am Chem Soc. 1928;50(9):2363–2366. doi:10.1021/ja01396a007
  • Shigematsu T, Gohda S, Yamazaki H, Nishikawa Y. Spectrophotometric determination of Chromium (III) and Chromium (VI) in sea water. Bull Inst Chem Res. 1978;55(5):429–440.
  • Samrot AV, Shobana N, Sruthi PD, Sahithya CS. Utilization of chitosan-coated superparamagnetic iron oxide nanoparticles for chromium removal. Appl Water Sci. 2018;8(7):192. doi:10.1007/s13201-018-0841-4
  • Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C Mater Biol Appl. 2010;30(3):484–490. doi:10.1016/j.msec.2010.01.006
  • Balasubramanian C, Joseph B, Gupta P, et al. X-ray absorption spectroscopy characterization of iron-oxide nanoparticles synthesized by high temperature plasma processing. J Electron Spectros Relat Phenomena. 2014;196:125–129. doi:10.1016/j.elspec.2014.02.011
  • Kumar S, Koh J. Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int J Mol Sci. 2012;13(5):6102–6116. doi:10.3390/ijms1305610222754352
  • Greenwood R, Kendall K. Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J Eur Ceram Soc. 1999;19(4):479–488. doi:10.1016/S0955-2219(98)00208-8
  • Mahmoudi M, Simchi A, Imani M, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces. 2010;75(1):300–309. doi:10.1016/j.colsurfb.2009.08.04419781921
  • Burks T, Uheida A, Saleemi M, Eita M, Toprak MS, Muhammed M. Removal of Chromium (VI) using surface modified superparamagnetic iron oxide nanoparticles. Sep Sci Technol. 2013;48(8):1243–1251. doi:10.1080/01496395.2012.734364
  • Hanif S, Shahzad A. Removal of chromium(VI) and dye Alizarin Red S (ARS) using polymer-coated iron oxide (Fe3O4) magn.etic nanoparticles by co-precipitation method. J Nanopart Res. 2013;16:2429. doi:10.1007/s11051-014-2429-8
  • Sureshkumar V, Daniel KSCG, Ruckmani K, Sivakumar M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl Nanosci. 2016;6:277. doi:10.1007/s13204-015-0429-3
  • Esmaeili A, Farrahi NT. The efficiency of a novel bioreactor employing bacteria and chitosan-coated magnetic nanoparticles. J Taiwan Inst Chem Eng. 2016;59:113–119. doi:10.1016/j.jtice.2015.08.022
  • Bhaumik M, Maity A, Srinivasu VV, Onyango MS. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater. 2011;190(1–3):381–390. doi:10.1016/j.jhazmat.2011.03.06221497438
  • Shalaby TI, Fikrt NM, Mohamed MM, El Kady MF. Preparation and characterization of iron oxide nanoparticles coated with chitosan for removal of Cd(II) and Cr(VI) from aqueous solution. Water Sci Technol. 2014;70(6):1004–1010. doi:10.2166/wst.2014.31525259488
  • Zhang S, Zhou Y, Nie W, Song L, Zhang T. Preparation of uniform magnetic chitosan microcapsules and their application in adsorbing copper ion(II) and chromium ion(III). Ind Eng Chem Res. 2012;51(43):14099–14106. doi:10.1021/ie301942j
  • Jiang YJ, Yu XY, Luo T, Jia Y, Liu JH, Huang XJ. γ-Fe2O3 nanoparticles encapsulated millimeter-sized magnetic chitosan beads for removal of Cr (VI) from water: thermodynamics, kinetics, regeneration, and uptake mechanisms. J Chem Eng Data. 2013;58(11):3142–3149. doi:10.1021/je400603p