148
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy

, , , , , , & show all
Pages 6357-6369 | Published online: 08 Aug 2019

References

  • Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2:17. doi:10.1186/s40662-015-0026-226605370
  • Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A. Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J. 2018;42(5):364–376. doi:10.4093/dmj.2018.018230362302
  • Mahdy RA, Nada WM, Hadhoud KM, El-Tarhony SA. The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (Lond). 2010;24(10):1576–1584. doi:10.1038/eye.2010.720508651
  • Yang CS, Hung KC, Huang YM, Hsu WM. Intravitreal bevacizumab (Avastin) and panretinal photocoagulation in the treatment of high-risk proliferative diabetic retinopathy. J Ocul Pharmacol Ther. 2013;29(6):550–555. doi:10.1089/jop.2012.020223495932
  • Kim Y-S, Joh TH. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol Ther. 2012;20(2):133–143. doi:10.4062/biomolther.2012.20.2.133
  • Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–464. doi:10.1002/path.140012845612
  • Kowluru RA. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras. Invest Ophthalmol Vis Sci. 2010;51(8):4320–4326. doi:10.1167/iovs.09-485120220057
  • Suarez S, McCollum GW, Jayagopal A, Penn JS. High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1. J Biol Chem. 2015;290(47):28311–28320. doi:10.1074/jbc.M115.68238526438826
  • Airoldi I, Di Carlo E, Cocco C, et al. Endogenous IL-12 triggers an antiangiogenic program in melanoma cells. Proc Natl Acad Sci USA. 2007;104(10):3996–34001. doi:10.1073/pnas.060902810417360466
  • Gafner V, Trachsel E, Neri D. An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer. 2006;119(9):2205–2212. doi:10.1002/ijc.2210116823838
  • Nisari M, Ulger H, Unur E, Karaca O, Ertekin T. Effect of interleukin 12 (IL-12) on embryonic development and yolk sac vascularisation. Bratisl Lek Listy. 2014;115(9):532–537.25318910
  • Zhou Y, Yoshida S, Kubo Y, et al. Interleukin-12 inhibits pathological neovascularization in rat model of oxygen-induced retinopathy. Sci Rep. 2016;6:28140. doi:10.1038/srep2814027312090
  • Roupakia E, Markopoulos GS, Kolettas E. IL-12-mediated transcriptional regulation of matrix metalloproteinases. Biosci Rep. 2018;38(3):pii: BSR20171420. doi:10.1042/BSR20171420
  • Vecchio MD, Emilio B, Canova S, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677–4685. doi:10.1158/1078-0432.CCR-07-077617699845
  • Strasly M, Cavallo F, Geuna M, et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J Immunol. 2001;166(6):3890–3899. doi:10.4049/jimmunol.166.6.389011238633
  • Gollob JA, Mier JW, Veenstra K, et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res. 2000;6:1678–1692.10815886
  • Alatrash G, Hutson TE, Molto L, et al. Clinical and immunologic effects of subcutaneously administered interleukin-12 and interferon alfa-2b: phase I trial of patients with metastatic renal cell carcinoma or malignant melanoma. J Clin Oncol. 2004;22(14):2891–2900. doi:10.1200/JCO.2004.08.04015254058
  • Younes A, Pro B, Robertson MJ, et al. Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin Cancer Res. 2004;10(16):5432–5438. doi:10.1158/1078-0432.CCR-04-100215328181
  • Mitra RN, Nichols CA, Guo J, et al. Nanoparticle-mediated miR200-b delivery for the treatment of diabetic retinopathy. J Control Release. 2016;236:31–37. doi:10.1016/j.jconrel.2016.06.02027297781
  • Gao J, Kou G, Wang H, et al. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat. 2009;115(1):29–41. doi:10.1007/s10549-008-0043-018481173
  • Gao J, Zhong W, He J, et al. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. In J Pharm. 2009;374(1–2):145–152.
  • Gao J, Kou G, Chen H, et al. Treatment of hepatocellular carcinoma in rats with PE38KDEL type I mutant-loaded poly(lactic-co-glycolic acid) nanoparticles conjugated with humanized SM5-1 F(ab’) fragments. Mol Cancer Ther. 2008;7:3399–3407. doi:10.1158/1535-7163.MCT-07-237018852143
  • Gao J, Xia Y, Chen H, et al. Polymer-lipid hybrid nanoparticles conjugated anti-EGFR antibody for targeted drug delivery to hepatocellular carcinoma. Nanomedicine (Lond). 2014;9(2):279–293. doi:10.2217/nnm.13.2023721168
  • Chen H, Gao J, Lu Y, et al. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release. 2008;128:209–216. doi:10.1016/j.jconrel.2008.03.01018450313
  • Fan Y, Qiao Y, Huang J, Tang M. Protective effects of panax notoginseng saponins against high glucose-InducedOxidative Injury in Rat Retinal Capillary Endothelial Cells. Evid Based Complement Alternat Med.2016;2016:5326382. doi:10.1155/2016/5326382
  • Amadio M, Bucolo C, Leggio GM, Drago F, Govoni S, Pascale A. The PKCbeta/HuR/VEGF pathway in diabetic retinopathy. Biochem Pharmacol. 2010 10 15;80(8):1230–7. doi:10.1016/j.bcp.2010.06.03320599775
  • Chen D, Pan X, Xie F, et al. Codelivery of doxorubicin and elacridar to target both liver cancer cells and stem cells by polylactide-co-glycolide/d-alpha-tocopherol polyethylene glycol 1000 succinate nanoparticles. In J Nanomedicine. 2018;13:6855–6870.
  • Sang DN, D’Amore PA. Is blockade of vascular endothelial growth factor beneficial for all types of diabetic retinopathy? Diabetologia. 2008;51(9):1570–1573. doi:10.1007/s00125-008-1078-918607560
  • Gonzalez VH, Campbell J, Holekamp NM, et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol. 2016;172:72–79. doi:10.1016/j.ajo.2016.09.01227644589
  • Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond). 2016;11(24):3261–3282. doi:10.2217/nnm-2016-023327854161
  • Bahrami B, Hong T, Gilles MC, Chang A. Anti-VEGF therapy for diabetic eye diseases. Asia Pac J Ophthalmol (Phila). 2017;6(6):535–545.29076303
  • Uemura A. Pharmacologic management of diabetic retinopathy. J Biochem. 2018;163(1):3–9. doi:10.1093/jb/mvy01028992234
  • Wong RJ, Chan MK, Yu Z, et al. Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res. 2004;10(13):4509–4516. doi:10.1158/1078-0432.CCR-04-100215240543
  • Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. 1996;87(9):3877–3882.8611715
  • Mahvi DM, Henry MB, Albertini MR, et al. Intratumoral injection of IL-12 plasmid DNA–results of a phase I/IB clinical trial. Cancer Gene Ther. 2007;14(8):717–723. doi:10.1038/sj.cgt.770106417557109
  • Ren H, Boulikas T, Lundstrom K, et al. Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene–a phase I/II clinical protocol. J Neurooncol. 2003;64(1–2):147–154. doi:10.1007/BF0270002912952295
  • Kang WK, Park C, Yoon HL, et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther. 2001;12(6):671–684. doi:10.1089/10430340175315397411426466
  • Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188. doi:10.3389/fphar.2012.0018823125835
  • Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm. 2013;440(2):135–140. doi:10.1016/j.ijpharm.2012.10.01423078856
  • Malik A, Gupta M, Mani R, Bhatnagar R. Single-dose Ag85B-ESAT6-loaded poly(lactic-co-glycolic acid) nanoparticles confer protective immunity against tuberculosis. Int J Nanomedicine. 2019;14:3129–3143. doi:10.2147/IJN.S19837631118627
  • Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. 2015;2015:582060. doi:10.1155/2015/81583926137497
  • Platania CBM, Giurdanella G, Di Paola L, et al. P2X7 receptor antagonism: implications in diabetic retinopathy. Biochem Pharmacol. 2017;138:130–139. doi:10.1016/j.bcp.2017.05.00128479300