434
Views
52
CrossRef citations to date
0
Altmetric
Original Research

Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution

, , , , , , , & show all
Pages 5381-5396 | Published online: 18 Jul 2019

References

  • Chang K-T, Lin -HY-H, Kuo C-H, Hung C-H. Tacrolimus suppresses atopic dermatitis-associated cytokines and chemokines in monocytes. J Microbiol Immunol Infect. 2016;49:409–416. doi:10.1016/j.jmii.2014.07.00625315214
  • Zhang D, Pan X, Wang S, et al. Multifunctional poly (methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer as an oral high-performance delivery carrier of tacrolimus. Mol Pharm. 2015;12:2337–2351. doi:10.1021/acs.molpharmaceut.5b0001026024817
  • Goebel AS, Neubert RH, Wohlrab J. Dermal targeting of tacrolimus using colloidal carrier systems. Int J Pharm. 2011;404:159–168. doi:10.1016/j.ijpharm.2010.11.02921094231
  • Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharma Sci. 2013;8:336–345. doi:10.1016/j.ajps.2013.09.005
  • Lapteva M, Mondon K, Möller M, Gurny R, Kalia YN. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: a targeted approach for the treatment of psoriasis. Mol Pharm. 2014;11:2989–3001. doi:10.1021/mp400639e25057896
  • Shin S-B, Cho H-Y, Kim D-D, Choi H-G, Lee Y-B. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm. 2010;74:164–171. doi:10.1016/j.ejpb.2009.08.00619703559
  • Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 2011;79:82–94. doi:10.1016/j.ejpb.2011.02.01621447390
  • Desfrançois C, Auzély R, Texier I. Lipid nanoparticles and their hydrogel composites for drug delivery: A review. Pharmaceuticals. 2018;11:118–145. doi:10.3390/ph11040118
  • Aljaeid BM, Hosny KM. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int J Nanomedicine. 2016;11:441–447. doi:10.2147/IJN.S10062526869787
  • Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int J Nanomedicine. 2017;12:955–968. doi:10.2147/IJN.S11513628203075
  • Kumar R, Singh A, Garg N, Siril PF. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason Sonochem. 2018;40:686–696. doi:10.1016/j.ultsonch.2017.08.01828946474
  • Rupenagunta A, Somasundaram I, Ravichandiram V, Kausalya J, Senthilnathan B. Solid lipid nanoparticles-A versatile carrier system. J Pharma Res. 2011;4:2069–2075.
  • Zoubari G, Staufenbiel S, Volz P, Alexiev U, Bodmeier R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur J Pharm Biopharm. 2017;110:39–46. doi:10.1016/j.ejpb.2016.10.02127810471
  • Ud Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–7309. doi:10.2147/IJN.S14631529042776
  • Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48:43–60. doi:10.1007/s40005-017-0370-4
  • Saporito F, Sandri G, Bonferoni MC, et al. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine. 2018;13:175–186. doi:10.2147/IJN.S15252929343956
  • Lohan SB, Bauersachs S, Ahlberg S, et al. Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur J Pharm Biopharm. 2015;89:201–207. doi:10.1016/j.ejpb.2014.12.00825500282
  • Oliveira MS, Mussi SV, Gomes DA, et al. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloid Surf B Biointerfaces. 2016;140:246–253. doi:10.1016/j.colsurfb.2015.12.01926764108
  • Ding Y, Pyo S, Müller R. smartLipids® as third solid lipid nanoparticle generation–stabilization of retinol for dermal application. Die Pharmazie Int J Pharma Sci. 2017;72:728–735.
  • Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–443. doi:10.1016/j.addr.2007.04.00617544165
  • Dabbagh A, Abdullah BJJ, Abu Kasim NH, Abdullah H, Hamdi M. A new mechanism of thermal sensitivity for rapid drug release and low systemic toxicity in hyperthermia and thermal ablation temperature ranges. Int J Hyperthermia. 2015;31:375–385. doi:10.3109/02656736.2015.100626825716769
  • Cha JM, You DG, Choi EJ, et al. Improvement of antitumor efficacy by combination of thermosensitive liposome with high-intensity focused ultrasound. J Biomed Nanotechnol. 2016;12:1724–1733. doi:10.1166/jbn.2016.227229345882
  • Sarwal A, Singh G, Singh S, Singh K, Sinha V. Novel and effectual delivery of an antifungal agent for the treatment of persistent vulvovaginal candidiasis. J Pharm Investig. 2019;49:135–147. doi:10.1007/s40005-018-0395-3
  • Centelles MN, Wright M, So P-W, et al. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J Control Release. 2018;280:87–98. doi:10.1016/j.jconrel.2018.04.04729723616
  • Guo Y, Zhang Y, Ma J, et al. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release. 2018;272:145–158. doi:10.1016/j.jconrel.2017.04.02828442407
  • Park SM, Kim MS, Park S-J, et al. Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release. 2013;170:373–379. doi:10.1016/j.jconrel.2013.06.00323770213
  • Kim YT, Ma D, Sim JK, Kim S-H. Simultaneous evaluation of thermal and non-thermal effects of high-intensity focused ultrasound on a tissue-mimicking phantom. Ultrasound Med Biol. 2018;44:1799–1809. doi:10.1016/j.ultrasmedbio.2018.03.02429759425
  • Tagami T, Foltz WD, Ernsting MJ, et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials. 2011;32:6570–6578. doi:10.1016/j.biomaterials.2011.05.02921641639
  • Kim HR, You DG, Park S-J, et al. MRI monitoring of tumor-selective anticancer drug delivery with stable thermosensitive liposomes triggered by high-intensity focused ultrasound. Mol Pharm. 2016;13:1528–1539. doi:10.1021/acs.molpharmaceut.6b0001326998616
  • Maniyar MG, Kokare CR. Formulation and evaluation of spray dried liposomes of lopinavir for topical application. J Pharm Investig. 2019;49:259–270. doi:10.1007/s40005-018-0403-7
  • Im GJ, Chae SY, Lee KC, Lee DS. Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. Journal of Controlled Release. 2009;137:20–24. doi:10.1016/j.jconrel.2009.02.02119285530
  • Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm. 2003;257:153–160.12711170
  • Praça FSG, Medina WSG, Eloy JO, et al. Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models. Eur J Pharm Sci. 2018;111:121–132. doi:10.1016/j.ejps.2017.09.03428951120
  • Rubins A, Gutmane R, Valdmane N, Stevenson P, Foster C, Undre N. Pharmacokinetics of 0.1% tacrolimus ointment after first and repeated application to adults with moderate to severe atopic dermatitis. J Invest Dermatol. 2005;125:68–71. doi:10.1111/j.0022-202X.2005.23754.x15982304
  • Park C-W, Kim J-Y, Rhee Y-S, et al. Preparation and valuation of a topical solution containing eutectic mixture of itraconazole and phenol. Arch Pharm Res. 2012;35:1935–1943. doi:10.1007/s12272-012-1110-y23212635
  • Xie S, Zhu L, Dong Z, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloid Surf B Biointerfaces. 2011;83:382–387. doi:10.1016/j.colsurfb.2010.12.01421215599
  • Wang R, Li L, Wang B, Zhang T, Sun L. FK506-loaded solid lipid nanoparticles: preparation, characterization and in vitro transdermal drug delivery. Afr J Pharm Pharmacol. 2012;6:904–913.
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–453. doi:10.1016/j.apsb.2015.07.00326579474
  • Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 2010;398:165–178. doi:10.1016/j.ijpharm.2010.07.00820637847
  • Jain S, Addan R, Kushwah V, Harde H, Mahajan RR. Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int J Pharm. 2019;562:96–104. doi:10.1016/j.ijpharm.2019.03.04230902706
  • Kim K-T, Lee HS, Lee J-J, et al. Nanodelivery systems for overcoming limited transportation of therapeutic molecules through the blood–brain barrier. Future Med Chem. 2018;10:2659–2674. doi:10.4155/fmc-2018-020830499740
  • Freitas C, Müller R. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47:125–132.10234536
  • Jawahar N, Baruah UK, Singh V. Co-delivery of chloroquine phosphate and azithromycin nanoparticles to overcome drug resistance in malaria through intracellular targeting. J Pharma Sci Res. 2019;11:33–40.
  • Pathak P, Nagarsenker M. Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech. 2009;10:985–992. doi:10.1208/s12249-009-9287-119641997
  • Corrigan DO, Healy AM, Corrigan OI. The effect of spray drying solutions of bendroflumethiazide/polyethylene glycol on the physicochemical properties of the resultant materials. Int J Pharm. 2003;262:125–137.12927394
  • Oh D-W, Kang J-H, Lee H-J, et al. Formulation and in vitro/in vivo evaluation of chitosan-based film forming gel containing ketoprofen. Drug Deliv. 2017;24:1056–1066. doi:10.1080/10717544.2017.134600128687046
  • Lee H-J, Kang J-H, Lee H-G, et al. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols. Drug Des Devel Ther. 2016;10:4017–4030. doi:10.2147/DDDT.S120356
  • Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Part II–in vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm. 2013;84:72–83. doi:10.1016/j.ejpb.2012.11.02623246619
  • Park C-W, Lee H-J, Oh D-W, Kang J-H, Han C-S, Kim D-W. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection. Drug Des Devel Ther. 2018;12:711–719. doi:10.2147/DDDT.S151437
  • Lee G-S, Lee D-H, Kang K-C, Lee C-I, Pyo H-B, Choi T-B. Preparation and characterization of bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) loaded solid lipid nano-particles (SLN). J Ind Eng Chem. 2007;13:1180–1187.
  • Din F, Choi JY, Kim DW, et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 2017;24:502–510. doi:10.1080/10717544.2016.127265128181835
  • Park JH, Kim DS, Mustapha O, et al. Comparison of a revaprazan-loaded solid dispersion, solid SNEDDS and inclusion compound: physicochemical characterisation and pharmacokinetics. Colloid Surf B Biointerfaces. 2018;162:420–426. doi:10.1016/j.colsurfb.2017.12.01729248606
  • Ud Din F, Mustapha O, Kim DW, et al. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur J Pharm Biopharm. 2015;94:64–72. doi:10.1016/j.ejpb.2015.04.01925979136
  • Jeong SC, Kim DS, Jin SG, et al. Development of a novel celecoxib-loaded nanosuspension using a wet media milling process. Die Pharmazie Int J Pharma Sci. 2018;73:498–502.
  • Urbán-Morlán Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chávez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine. 2010;5:611–620. doi:10.2147/IJN.S1212520856836
  • Garcês A, Amaral M, Lobo JS, Silva A. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci. 2018;112:159–167. doi:10.1016/j.ejps.2017.11.02329183800
  • El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25:78–90. doi:10.1080/10717544.2017.141344429239242
  • Hansen L, Lange R, Gupta S. Development and evaluation of a guideline for monitoring propylene glycol toxicity in pediatric intensive care unit patients receiving continuous infusion lorazepam. J Pediatr Pharmacol Ther. 2015;20:367–372. doi:10.5863/1551-6776-20.5.36726472950
  • Petry T, Bury D, Fautz R, et al. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications. Toxicol Lett. 2017;280:70–78. doi:10.1016/j.toxlet.2017.07.89928789996