127
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Co-delivery of allergen epitope fragments and R848 inhibits food allergy by inducing tolerogenic dendritic cells and regulatory T cells

, , , , , , & show all
Pages 7053-7064 | Published online: 30 Aug 2019

References

  • Dang TD, Allen KJ, J Martino D, Koplin JJ, Licciardi PV, Tang ML. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure. Pediatr Allergy Immunol. 2016;27(1):35–43. doi:10.1111/pai.1249826456457
  • Venter C, Arshad SH. Epidemiology of food allergy. Pediatr Allergy Immunol. 2011;58(2):42–50.
  • Mansoor DK, Sharma HP. Clinical presentations of food allergy. Pediatr Clin North Am. 2011;58(2):315–326. doi:10.1016/j.pcl.2011.02.00821453804
  • Sicherer SH. Epidemiology of food allergy. Pediatr Allergy Immunol. 2011;127(3):594.
  • Varshney P, Jones SM, Scurlock AM, et al. A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol. 2011;127(3):654–660. doi:10.1016/j.jaci.2010.12.111121377034
  • Chin SJ, Vickery BP, Kulis MD, et al. Sublingual versus oral immunotherapy for peanut-allergic children: a retrospective comparison. J Allergy Clin Immunol. 2013;132(2):476–478. doi:10.1016/j.jaci.2013.02.01723534975
  • Anagnostou K, Clark A, King Y, Islam S, Deighton J, Ewan P. Efficacy and safety of high-dose peanut oral immunotherapy with factors predicting outcome. Clin Exp Allergy. 2011;41(9):1273–1281. doi:10.1111/j.1365-2222.2011.03699.x21414048
  • Wai CYY, Leung NYH, Leung PSC, Chu KH. Immunotherapy of food allergy: a comprehensive review. Clin Rev Allergy Immunol. 2019; 57(1):55–73. doi:10.1007/s12016-017-8647-y.
  • Prickett SR, Rolland JM, O’Hehir RE. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy. 2015;45(6):1015–1026. doi:10.1111/cea.1255425900315
  • Chhiba KD, Singh AM, Bryce PJ. New developments in immunotherapies for food allergy. Immunotherapy. 2015;7(8):913–922. doi:10.2217/IMT.15.5526268849
  • Gupta K, Kumar S, Das M, Dwivedi PD. Peptide based immunotherapy: A pivotal tool for allergy treatment. Int Immunopharmacol. 2014;19(2):391–398. doi:10.1016/j.intimp.2014.01.03024530919
  • Van LP, Bardel E, Gregoire S, et al. Treatment with the TLR7 agonist R848 induces regulatory T-cell-mediated suppression of established asthma symptoms. Eur J Immunol. 2011;41(7):1992–1999. doi:10.1002/eji.20104091421480211
  • Qu S, Qin T, Li M, et al. The effects of resiquimod in an ovalbumin-induced allergic rhinitis model. Int Immunopharmacol. 2018;59:233–242. doi:10.1016/j.intimp.2018.04.01529665497
  • Hao Y, Dong M, Zhang T, et al. A novel approach of using near-infrared responsive PEGylated gold nanorod coated poly (L-Lactide) microneedles to enhance the antitumor efficiency of docetaxel loaded MPEG-PDLLA micelles for treating A431 tumor. ACS Appl Mater Interfaces. 2017;9(18):15317. doi:10.1021/acsami.7b0360428418236
  • Xiang GH, Hong GB, Wang Y, Cheng D, Zhou JX, Shuai XT. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro. International Journal of Nanomedicine 2013;8(1):4613–4622.
  • Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014;21(9):1115–1142. doi:10.1016/j.chembiol.2014.08.01325237858
  • Yuan J, Guo L, Wang S, et al. Preparation of self-assembled nanoparticles of epsilon-polylysine-sodium alginate: a sustained-release carrier for antigen delivery. Colloids Surf B Biointerfaces. 2018;171:406–412. doi:10.1016/j.colsurfb.2018.07.05830071482
  • Peng X, Liang Y, Yin Y, Liao H, Li L. Development of a hollow mesoporous silica nanoparticles vaccine to protect against house dust mite induced allergic inflammation. Int J Pharm. 2018;549(1–2):115–123. doi:10.1016/j.ijpharm.2018.07.04730040973
  • Shen J, Burgess DJ. Drugs for Long Acting Injections and Implants. US: Springer; 2012.
  • Rahimian S, Fransen MF, Kleinovink JW, et al. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J Control Release. 2015;203:16–22. doi:10.1016/j.jconrel.2015.02.00625660830
  • Wang H, Mo L, Xiao X, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322. doi:10.1038/srep4332228240301
  • Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy. 2015;70(9):1091–1102. doi:10.1111/all.1265025966668
  • Yamaki K, Yoshino S. Preventive and therapeutic effects of rapamycin, a mammalian target of rapamycin inhibitor, on food allergy in mice. Allergy. 2012;67(10):1259–1270. doi:10.1111/all.1200022913509
  • Yamashita H, Takahashi K, Tanaka H, Nagai H, Inagaki N. Overcoming food allergy through acquired tolerance conferred by transfer of Tregs in a murine model. Allergy. 2012;67(2):201–209. doi:10.1111/j.1398-9995.2011.02742.x22050332
  • Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine. 2014;9(17):2657–2669. doi:10.2217/nnm.14.18725529569
  • Gaumet M, Gurny R, Delie F. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci. 2009;36(4):465–473. doi:10.1016/j.ejps.2008.11.01519124077
  • Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O’Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs ☆. Adv Drug Deliv Rev. 2016;106(Pt B):367. doi:10.1016/j.addr.2016.06.00627320644
  • Aguado MT, Lambert PH. Controlled-release vaccines-biodegradable Polylactide/Polyglycolide (PL/PG) microspheres as antigen vehicles. Immunobiology. 1992;184(2–3):113–125. doi:10.1016/S0171-2985(11)80470-51587538
  • Maeta A, Matsushima M, Muraki N, et al. Low-dose oral immunotherapy using low-egg-allergen cookies for severe egg-allergic children reduces allergy severity and affects allergen-specific antibodies in serum. Int Arch Allergy Immunol. 2018. doi:10.1159/000485891
  • Joshi VB, Adamcakovadodd A, Jing X, et al. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. Aaps J. 2014;16(5):975–985. doi:10.1208/s12248-014-9624-524981892
  • Marazuela EG, Prado N, Moro E, Villalba M, Rodríguez R, Batanero E. Intranasal vaccination with poly(lactide‐co‐glycolide) microparticles containing a peptide T of Ole e 1 prevents mice against sensitization. Clin Exp Allergy. 2008;38(3):520–528. doi:10.1111/j.1365-2222.2007.02922.x18205856
  • Tonigold M, Mailänder V. Endocytosis and intracellular processing of nanoparticles in dendritic cells: routes to effective immunonanomedicines. Nanomedicine. 2016;11(20):nnm-2016–0195. doi:10.2217/nnm-2016-0195
  • Tacken P, De-Vries IR, Figdor C. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7(10):790–802. doi:10.1038/nri217317853902
  • Silva AL, Rosalia RA, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine. 2015;33(7):847–854. doi:10.1016/j.vaccine.2014.12.05925576216
  • Chen W, Konkel JE. Development of thymic Foxp3(+) regulatory T cells: TGF-β matters. Eur J Immunol. 2015;45(4):958–965. doi:10.1002/eji.20144499925684698
  • Eusebio M, Kuna P, Kraszula L, Kupczyk M, Pietruczuk M. Allergy-related changes in levels of CD8+CD25+FoxP3(bright) Treg cells and FoxP3 mRNA expression in peripheral blood: the role of IL-10 or TGF-beta. J Biol Regul Homeost Agents. 2014;28(3):461–470.25316133
  • Coombes JL, Siddiqui KRR, Arancibiacárcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J Exp Med. 2007;204(8):1757–1764. doi:10.1084/jem.2007059017620361
  • Jia L, Lu J, Zhou Y, et al. Tolerogenic dendritic cells induced the enrichment of CD4+Foxp3+ regulatory T cells via TGF-β in mesenteric lymph nodes of murine LPS-induced tolerance model. Clin Immunol.2018;197:118–129. doi:10.1016/j.clim.2018.09.010.
  • Dhodapkar MV, Mario S, Biwei Z, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014;6(232):232ra251. doi:10.1126/scitranslmed.3008068
  • Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines. 2015;3(3):662–685. doi:10.3390/vaccines303066226350600
  • Ulapane KR, Kopec BM, Meg M, Siahaan TJ. Peptides and drug delivery. Oxygen Transp Tissue XXXIII. 2017;1030:167–184. doi:10.1007/978-3-319-66095-0_8.
  • Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25(2):79–87. doi:10.5001/omj.2010.24
  • Lautenschläger C, Schmidt C, Lehr CM, Fischer D, Stallmach A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm. 2013;85(3):578–586. doi:10.1016/j.ejpb.2013.09.01624084650
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery ☆. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi:10.1016/j.addr.2015.09.01226456916
  • Pawar VK, Meher JG, Singh Y, Chaurasia M, Reddy BS, Chourasia MK. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. J Controlled Release. 2014;196:168–183. doi:10.1016/j.jconrel.2014.09.031
  • Ochel M, Vohr HW, Pfeiffer C, Gleichmann E. IL-4 is required for the IgE and IgG1 increase and IgG1 autoantibody formation in mice treated with mercuric chloride. J Immunol. 1991;146(9):3006–3011.2016536
  • Kitaoka M, Naritomi A, Kawabe Y, Kamihira M, Goto M. Transcutaneous pollinosis immunotherapy using a solid-in-oil nanodispersion system carrying T cell epitope peptide and R848. Bioeng Transl Med. 2017;2(1):102–108. doi:10.1002/btm2.1004829313026
  • Brugnolo F, Sampognaro S, Liotta F, et al. The novel synthetic immune response modifier R-848 (Resiquimod) shifts human allergen-specific CD4+ TH2 lymphocytes into IFN-gamma-producing cells. J Allergy Clin Immunol. 2003;111(2):380–388. doi:10.1067/mai.2003.10212589360
  • Shen E, Lu L, Wu C. TLR7/8 ligand, R-848, inhibits IgE synthesis by acting directly on B lymphocytes. Scand J Immunol. 2010;67(6):560–568. doi:10.1111/j.1365-3083.2008.02105.x
  • Siebeneicher S, Reuter S, Krause M, et al. Epicutaneous immune modulation with Bet v 1 plus R848 suppresses allergic asthma in a murine model. Allergy. 2014;69(3):328–337. doi:10.1111/all.1232624329861
  • Cui J, Pazdziorko S, Miyashiro JS, et al. T H 1-mediated airway hyperresponsiveness independent of neutrophilic inflammation. J Allergy Clin Immunol. 2005;115(2):309–315. doi:10.1016/j.jaci.2004.10.04615696086
  • Stock P, Dekruyff RH, Umetsu DT. Inhibition of the allergic response by regulatory T cells. Curr Opin Allergy Cli Immunol. 2006;6(1):12–16. doi:10.1097/01.all.0000200502.69672.44
  • Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA. Role of Treg in immune regulation of allergic diseases. Eur J Immunol. 2010;40(5):1232–1240. doi:10.1002/eji.20094004520148422
  • Du PM, Samsom JN. Adaptive T-cell responses regulating oral tolerance to protein antigen. Allergy. 2011;66(4):478–490. doi:10.1111/j.1398-9995.2010.02519.x21143239