239
Views
39
CrossRef citations to date
0
Altmetric
Original Research

Anti-Adhesive And Antiproliferative Synergistic Surface Modification Of Intraocular Lens For Reduced Posterior Capsular Opacification

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 9047-9061 | Published online: 19 Nov 2019

References

  • Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Global Health. 2017;5(9):e888–e897. doi:10.1016/S2214-109X(17)30293-028779882
  • Schmidbauer JM, Vargas LG, Peng Q, et al. Posterior capsule opacification. Int Ophthalmol Clin. 2001;41(3):109–131. doi:10.1097/00004397-200107000-0001011481543
  • Marcantonio JM, Vrensen GFJM. Cell biology of posterior capsular opacification. Eye. 1999;13:484–488. doi:10.1038/eye.1999.12610627829
  • Garty S, Shirakawa R, Warsen A, et al. Sustained antibiotic release from an intraocular lens-hydrogel assembly for cataract surgery. Invest Ophthalmol Vis Sci. 2011;52:6109–6116. doi:10.1167/iovs.10-607121447687
  • Lipnitzki I, Bronshtein R, Ben Eliahu S, Marcovich AL, Kleinmann G. Hydrophilic acrylic intraocular lens as a drug delivery system: influence of the presoaking time and comparison to intracameral injection. J Ocul Pharmacol Th. 2013;29:414–418. doi:10.1089/jop.2012.0062
  • Viola GM, Rosenblatt J, Raad II. Drug eluting antimicrobial vascular catheters: progress and promise. Adv Drug Deliver Rev. 2017;112:35–47. doi:10.1016/j.addr.2016.07.011
  • Biran R, Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliver Rev. 2017;112:12–23. doi:10.1016/j.addr.2016.12.002
  • Eloy R, Parrat D, Duc TM, Legeay G, Bechetoille A. In vitro evaluation of inflammatory cell response after CF4 plasma surface modification of poly(methyl methacrylate) intraocular lenses. J Cataract Refr Surg. 1993;19:364–370. doi:10.1016/S0886-3350(13)80307-0
  • Yammine P, Pavon-Djavid G, Helary G, Migonney V. Surface modification of silicone intraocular implants to inhibit cell proliferation. Biomacromolecules. 2005;6:2630–2637. doi:10.1021/bm058010l16153101
  • Huang XD, Yao K, Zhang Z, Zhang Y, Wang Y. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface. J Cataract Refr Surg. 2010;36:290–298. doi:10.1016/j.jcrs.2009.09.027
  • Huang X, Luo C, Lin L, et al. UV-assisted treatment on hydrophobic acrylic IOLs anterior surface with methacryloyloxyethyl phosphorylcholine: reducing inflammation and maintaining low posterior capsular opacification properties. Mat Sci Eng C-Mater. 2017;75:1289–1298. doi:10.1016/j.msec.2017.03.029
  • Krall EM, Arlt EM, Jell G, Strohmaier C, Moussa S, Dexl AK. Prospective randomized intraindividual comparison of posterior capsule opacification after implantation of an IOL with and without heparin surface modification. J Refract Surg. 2015;31:466–472. doi:10.3928/1081597X-20150623-0526158927
  • Lin QK, Xu X, Wang BL, et al. Hydrated polysaccharide multilayer as an intraocular lens surface coating for biocompatibility improvements. J Mater Chem B. 2015;3:3695–3703. doi:10.1039/C5TB00111K
  • Xu X, Tang JM, Han YM, Wang W, Chen H, Lin QK. Surface PEGylation of intraocular lens for PCO prevention: an in vivo evaluation. J Biomater Appl. 2016;31:68–76. doi:10.1177/088532821663854726980548
  • Han YM, Xu X, Tang JM, Shen CH, Lin QK, Chen H. Bottom-up fabrication of zwitterionic polymer brush on intraocular lens for improved biocompatibility. Int J Nanomed. 2017;12:127–135. doi:10.2147/IJN.S107491
  • Lin QK, Tang JM, Han YM, Xu X, Hao XJ, Chen H. Hydrophilic modification of intraocular lens via surface initiated reversible addition-fragmentation chain transfer polymerization for reduced posterior capsular opacification. Colloid Surface B. 2017;151:271–279. doi:10.1016/j.colsurfb.2016.12.028
  • Lin QK, Xu X, Wang Y, Wang B, Chen H. Antiadhesive and antibacterial polysaccharide multilayer as IOL coating for prevention of postoperative infectious endophthalmitis. Int J Polym Mater. 2017;66:97–104. doi:10.1080/00914037.2016.1190925
  • Tsai M, Bai S, Chen R. Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr Polym. 2008;71:448–457. doi:10.1016/j.carbpol.2007.06.015
  • Lin QK, Ren KF, Ji J. Hyaluronic acid and chitosan-DNA complex multilayered thin film as surface-mediated nonviral gene delivery system. Colloid Surface B. 2009;74:298–303. doi:10.1016/j.colsurfb.2009.07.036
  • Lin QK, Van JJ, Qiu FY, Song XX, Fu GS, Ji JA. Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. J Biomed Mater Res A. 2011;96A:132–141. doi:10.1002/jbm.a.32820
  • Lin QK, Ding X, Qiu FY, Song XX, Fu GS, Ji J. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer. Biomaterials. 2010;31:4017–4025. doi:10.1016/j.biomaterials.2010.01.09220149438
  • Han Y, Xu X, Wang Y, et al. Drug eluting intraocular lens surface modification for PCO prevention. Colloid Interf Sci Commun. 2018;24:40–44. doi:10.1016/j.colcom.2018.03.007
  • Vieira AP, Pimenta AF, Silva D, et al. Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin. Eur J Pharm Biopharm. 2017;120:52–62. doi:10.1016/j.ejpb.2017.08.00628822873
  • Huang Q, Cheng GPM, Chiu K, Wang GQ. Surface modification of intraocular lenses. Chinese Med J-Peking. 2016;129:206–214. doi:10.4103/0366-6999.173496
  • Chehimi MM, Lamouri A, Picot M, Pinson J. Surface modification of polymers by reduction of diazonium salts: polymethylmethacrylate as an example. J Mater Chem C. 2014;2:356–363. doi:10.1039/C3TC31492H
  • Amoozgar B, Fitzpatrick SD, Sheardown H. Effect of anti-TGF- 2 surface modification of polydimethylsiloxane on lens epithelial cell markers of posterior capsule opacification. J Bioact Compat Pol. 2013;28:637–651. doi:10.1177/0883911513504855
  • Hettlich HJ, Otterbach F, Mittermayer C, Kaufmann R, Klee D. Plasma-induced surface modifications on silicone intraocular lenses: chemical analysis and in vitro characterization. Biomaterials. 1991;12:521–524. doi:10.1016/0142-9612(91)90153-21892989
  • Tang JM, Han YM, Chen H, Lin QK. Bottom-up fabrication of PEG brush on poly(dimethylsiloxane) for antifouling surface construction. Int J Polym Sci. 2016;2016:8458752. doi:10.1155/2016/8458752
  • Saika S, Werner L, Lovicu FJ. Lens Epithelium and Posterior Capsular Opacification. Japan: Springer; 2014.
  • Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007;369:667–678. doi:10.1016/S0140-6736(07)60314-617321312
  • Mohammadpourdounighi N, Behfar A, Ezabadi A, Zolfagharian H, Heydari M. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomed-Nanotechnol. 2010;6:137–143. doi:10.1016/j.nano.2009.06.002
  • Lin QK, Hou Y, Ren KF, Ji J. Selective endothelial cells adhesion to Arg-Glu-Asp-Val peptide functionalized polysaccharide multilayer. Thin Solid Films. 2012;520:4971–4978. doi:10.1016/j.tsf.2012.03.041
  • Masuko T, Iwasaki N, Yamane S, et al. Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering. Biomaterials. 2005;26:5339–5347. doi:10.1016/j.biomaterials.2005.01.06215814132
  • Bugnicourt L, Ladavière C. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog Polym Sci. 2016;60:1–17. doi:10.1016/j.progpolymsci.2016.06.002
  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–267. doi:10.1016/S0168-3659(01)00294-211516503
  • Guha R, Chowdhury S, Palui H, et al. Doxorubicin-loaded MePEG-PCL nanoparticles for prevention of posterior capsular opacification. Nanomedicine-UK. 2013;8:1415–1428. doi:10.2217/nnm.12.175
  • Lin QK, Yan JJ, Ji J, Shen JC. Natural anticoagulant and endothelial cell-compatible multilayer for endovascular stents surface modification. Chem J Chinese U. 2009;30:1256–1258.
  • Lin QK, Hou Y, Xu X, et al. Anti-CD34 antibody functionalized swollen polymeric coating for endothelial cell rapid selectively capture. Int J Polym Mater. 2015;64:99–103. doi:10.1080/00914037.2014.886248
  • Larsson R, Selén G, Björdklund H, Fagerholm P. Intraocular PMMA lenses modified with surface-immobilized heparin: evaluation of biocompatibility in vitro and in vivo. Biomaterials. 1989;10:511–516. doi:10.1016/0142-9612(89)90055-02605284
  • Trocme SD, Li H-I. Effect of heparin-surface-modified intraocular lenses on postoperative inflammation after phacoemulsification: a randomized trial in a United States patient population. Ophthalmology. 2000;107:1031–1037. doi:10.1016/S0161-6420(00)00098-110857818
  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37. doi:10.1038/nrc.2016.10827834398
  • Tsuruta W, Tsurushima H, Yamamoto T, Suzuki K, Yamazaki N, Matsumura A. Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury. Biomaterials. 2009;30:118–125. doi:10.1016/j.biomaterials.2008.09.00918842296
  • Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol. 2015;72:1313–1322. doi:10.1016/j.ijbiomac.2014.10.05225450550
  • Morishima H, Washio J, Kitamura J, Shinohara Y, Takahashi T, Takahashi N. Real-time monitoring system for evaluating the acid-producing activity of oral squamous cell carcinoma cells at different environmental pH. Sci Rep-UK. 2017;7:10092. doi:10.1038/s41598-017-10893-y