149
Views
28
CrossRef citations to date
0
Altmetric
Original Research

Toxicity screening of two prevalent metal organic frameworks for therapeutic use in human lung epithelial cells

, , , , , & show all
Pages 7583-7591 | Published online: 17 Sep 2019

References

  • Arbulu RC, Jiang YB, Peterson EJ, Qin Y. Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew Chem Int Edit. 2018;57:5813–5817. doi:10.1002/anie.201802694
  • Dhakshinamoorthy A, Asiri AM, Garcia H. Catalysis by metal-organic frameworks in water. Chem Commun. 2014;50:12800–12814. doi:10.1039/C4CC04387A
  • Eddaoudi M. Size almost doesn’t matter. Nat Mater. 2007;6:718–719. doi:10.1038/nmat202017906655
  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:974–986. doi:10.1126/science.1230444
  • Ma A, Luo Z, Gu C, Li B, Liu J. Cytotoxicity of a metal-organic framework: drug delivery. Inorg Chem Commun. 2017;77:68–71. doi:10.1016/j.inoche.2017.01.004
  • Zhu QL, Xu Q. Metal-organic framework composites. Chem Soc Rev. 2014;43:5468–5512. doi:10.1039/c3cs60472a24638055
  • Kim J, Kim DO, Kim DW, Sagong K. Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H-2 molecules. J Solid State Chem. 2015;230:110–117. doi:10.1016/j.jssc.2015.06.034
  • Seoane B, Coronas J, Gascon I, et al. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev. 2015;44:2421–2454. doi:10.1039/c4cs00437j25692487
  • Li B, Wen HM, Cui YJ, Zhou W, Qian GD, Chen BL. Emerging multifunctional metal-organic framework materials. Adv Mater. 2016;28:8819–8860.27454668
  • Liu Q, Chapman J, Huang AS, et al. User-tailored metal organic frameworks as supports for carbonic anhydrase. Acs Appl Mater Inter. 2018;10:41326–41337. doi:10.1021/acsami.8b14125
  • Salunkhe RR, Kaneti YV, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano. 2017;11:5293–5308. doi:10.1021/acsnano.7b0279628613076
  • Zhang C, Zhang L, Xu GC, et al. Metal organic framework-derived Co3O4 microcubes and their catalytic applications in CO oxidation. New J Chem. 2017;41:1631–1636. doi:10.1039/C6NJ02507B
  • Chowdhury MA. Metal-organic-frameworks for biomedical applications in drug delivery, and as MRI contrast agents. J Biomed Mater Res A. 2017;105:1184–1194. doi:10.1002/jbm.a.3599528033653
  • Yang WT, Feng J, Zhang HJ. Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J Mater Chem. 2012;22:6819–6823. doi:10.1039/c2jm16344f
  • Taylor KML, Rieter WJ, Lin WB. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J Am Chem Soc. 2008;130:14358-+. doi:10.1021/ja803777x
  • Chowdhuri AR, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton T. 2016;45:2963–2973. doi:10.1039/C5DT03736K
  • Rieter WJ, Taylor KML, An HY, Lin WL, Lin WB. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128:9024–9025. doi:10.1021/ja062744416834362
  • Beg S, Rahman M, Jain A, et al. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov Today. 2017;22:625–637. doi:10.1016/j.drudis.2016.10.00127742533
  • Filippousi M, Turner S, Leus K, et al. Biocompatible Zr-based nanoscale MOFs coated with modified poly (epsilon-caprolactone) as anticancer drug carriers. Int J Pharmaceut. 2016;509:208–218. doi:10.1016/j.ijpharm.2016.05.048
  • Wang HN, Meng X, Yang GS, et al. Stepwise assembly of metal-organic framework based on a metal-organic polyhedron precursor for drug delivery. Chem Commun. 2011;47:7128–7130. doi:10.1039/c1cc11932j
  • Tamames-Tabar C, Cunha D, Imbuluzqueta E, et al. Cytotoxicity of nanoscaled metal-organic frameworks. J Mater Chem B. 2014;2:262–271. doi:10.1039/C3TB20832J
  • Ruyra A, Yazdi A, Espin J, et al. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. Chem-Eur J. 2015;21:2508–2518. doi:10.1002/chem.20140538025504892
  • Ren F, Yang BC, Cai J, Jiang YD, Xu J, Wang S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. J Hazard Mater. 2014;271:283–291. doi:10.1016/j.jhazmat.2014.02.02624637453
  • Grall R, Hidalgo T, Delic J, Garcia-Marquez A, Chevillard S, Horcajada P. In vitro biocompatibility of mesoporous metal (III; Fe, Al, Cr) trimesate MOF nanocarriers. J Mater Chem B. 2015;3:8279–8292. doi:10.1039/C5TB01223F
  • Eldawud R, Wagner A, Dong CB, Rojansakul Y, Dinu CZ. Platform for real-time multi-parametric analysis of cellular behavior post-exposure to single-walled carbon nanotubes. Biosens Bioelectron. 2015;71:269–277. doi:10.1016/j.bios.2015.04.04425913448
  • Cadiau A, Lee JS, Borges DD, et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv Mater. 2015;27:4775–4780. doi:10.1002/adma.20150241826193346
  • Zhang K, Lively RP, Zhang C, et al. Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations. J Phys Chem Lett. 2013;4:3618–3622. doi:10.1021/jz402019d
  • Park YH, Kim D, Dai J, Zhang Z. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharm. 2015;287:240–245. doi:10.1016/j.taap.2015.06.008
  • Borges DD, Normand P, Permiakova A, et al. Gas adsorption and separation by the Al-based metal-organic framework MIL-160. J Phys Chem C. 2017;121:26822–26832. doi:10.1021/acs.jpcc.7b08856
  • Haydar AL, Abid M, Sunderland HR, Wang S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des Dev Ther. 2017;11:2685–2695. doi:10.2147/DDDT.S145716
  • Zheng HQ, Zhang YN, Liu LF, et al. One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138:962–968. doi:10.1021/jacs.5b1172026710234
  • Qian JF, Sun FA, Qin LZ. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett. 2012;82:220–223.
  • Pan YC, Liu YY, Zeng GF, Zhao L, Lai ZP. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun. 2011;47:2071–2073. doi:10.1039/c0cc05002d
  • Giaever I, Keese CR. Micromotion of mammalian-cells measured electrically. P Natl Acad Sci USA. 1991;88:7896–7900. doi:10.1073/pnas.88.17.7896
  • Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res. 2000;259:158–166. doi:10.1006/excr.2000.491910942588
  • Xiao C, Lachance B, Sunahara G, Luong JHT. An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading mammalian cells. Anal Chem. 2002;74:1333–1339. doi:10.1021/ac011104a11924593
  • Morris W, Stevens CJ, Taylor RE, Dybowski C, Yaghi OM, Garcia-Garibay MA. NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. J Phys Chem C. 2012;116:13307–13312. doi:10.1021/jp303907p
  • Eldawud R, Wagner A, Dong CB, Stueckle TA, Rojanasakul Y, Dinu CZ. Carbon nanotubes physicochemical properties influence the overall cellular behavior and fate. Nanoimpact. 2018;9:72–84. doi:10.1016/j.impact.2017.10.006
  • Eldawud R, Reitzig M, Opitz J, et al. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate. Nanotechnology. 2016;27. doi:10.1088/0957-4484/27/36/365202
  • Farcal L, Andon FT, Di Cristo L, et al. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One. 2015;10. doi:10.1371/journal.pone.0127174
  • Vesterkvist PSM, Misiorek JO, Spoof LEM, Toivola DM, Meriluoto JAO. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on caco-2 cells. Toxins. 2012;4:1008–1023. doi:10.3390/toxins411100823202304
  • Ibarguren M, Lopez DJ, Escriba PV. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta. 2014;1838:1518–1528. doi:10.1016/j.bbamem.2013.12.02124388951
  • Nor YA, Niu Y, Karmakar S, et al. Shaping nanoparticles with hydrophilic compositions and hydrophobic properties as nanocarriers for antibiotic delivery. ACS Cent Sci. 2015;1:328–334. doi:10.1021/acscentsci.5b0019927162988
  • Lazaro IA, Lazaro SA, Forgan RS. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun. 2018;54:2792–2795. doi:10.1039/C7CC09739E
  • Wallace WE, Keane MJ, Murray DK, Chisholm WP, Maynard AD, Ong T. Phosopholipid lung surfacant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res. 2007;9:23–38. doi:10.1007/s11051-006-9159-5
  • Napierska D, Thomassen LCJ, Rabolli V, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–853. doi:10.1002/smll.20080046119288475
  • Osman AF, TF MF, Rakibuddin M, et al. Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer. Mater Sci Eng C Mater Biol Appl. 2017;74:194–206. doi:10.1016/j.msec.2016.11.13728254285
  • Xiao CD, Lachance B, Sunahara G, Luong JHT. Assessment of cytotoxicity using electric cell-substrate impedance sensing: Concentration and time response function approach. Anal Chem. 2002;74:5748–5753. doi:10.1021/ac025848f12463358
  • Lo CM, Keese CR, Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J. 1995;69:2800–2807. doi:10.1016/S0006-3495(95)80153-08599686