547
Views
53
CrossRef citations to date
0
Altmetric
Review

Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: a review of current techniques

, , , , , & show all
Pages 7217-7236 | Published online: 05 Sep 2019

References

  • Lee K, Goodman SB. Current state and future of joint replacements in the hip and knee. Expert Rev Med Devices. 2008;5(3):383–393. doi:10.1586/17434440.5.3.38318452388
  • Agarwal R, Garcia AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliver Rev. 2015;94:53–62. doi:10.1016/j.addr.2015.03.013
  • Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. Brit Dent J. 2015;218:5. doi:10.1038/sj.bdj.2015.17125571803
  • Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mat Sci Eng C-Mater. 2017;81:597–606. doi:10.1016/j.msec.2017.08.017
  • Feng WC, Geng Z, Li ZY, et al. Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mat Sci Eng C-Mater. 2016;62:105–112. doi:10.1016/j.msec.2016.01.046
  • Peng Z, Ni J, Zheng K, et al. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int J Nanomedicine. 2013;8:3093–3105. doi:10.2147/IJN.S4808423983463
  • Jacqueline C, Caillon J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemoth. 2014;69:37–40. doi:10.1093/jac/dku254
  • Rabin N, Zheng Y, Opoku-Temeng C, Du YX, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents (vol 7, pg 493, 2015). Future Med Chem. 2015;7(10):1362. doi:10.4155/fmc.15.7726000777
  • Abad CL, Haleem A. Prosthetic joint infections: an update. Curr Infect Dis Rep. 2018;20(7):15. doi:10.1007/s11908-018-0622-029789958
  • Wang Q, Huang JY, Li HQ, et al. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int J Nanomed. 2017;12:151-165. doi:10.2147/Ijn.S117498
  • Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudre C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54. doi:10.1016/j.actbio.2018.10.03630541702
  • Gulati K, Ivanovski S. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges. Expert Opin Drug Del. 2017;14(8):1009–1024. doi:10.1080/17425247.2017.1266332
  • Yavari SA, Chai YC, Bottger AJ, et al. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium. Mat Sci Eng C-Mater. 2015;51:132–138. doi:10.1016/j.msec.2015.02.050
  • Khudhair D, Bhatti A, Li Y, et al. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mat Sci Eng C-Mater. 2016;59:1125–1142. doi:10.1016/j.msec.2015.10.042
  • Huo KF, Gao B, Fu JJ, Zhao LZ, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4(33):17300–17324. doi:10.1039/C4RA01458H
  • Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol. 2018;9. doi:10.3389/Fmicb.2018.00422.29387050
  • Luan YF, Liu SD, Pihl M, et al. Bacterial interactions with nanostructured surfaces. Curr Opin Colloid In. 2018;38:170–189. doi:10.1016/j.cocis.2018.10.007
  • Li XL. Bactericidal mechanism of nanopatterned surfaces. Phys Chem Chem Phys. 2016;18(2):1311–1316. doi:10.1039/c5cp05646b26661138
  • Wang Q, Huang JY, Li HQ, et al. TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomed. 2016;11:4819–4834. doi:10.2147/IJN.S108847
  • Noman MT, Ashraf MA, Ali A. Synthesis and applications of nano-TiO2: a review. Environ Sci Pollut R. 2019;26(4):3262–3291. doi:10.1007/s11356-018-3884-z
  • Faraji M, Mohaghegh N, Abedini A. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity. J Photochem Photobiol B Biol. 2018;178:124–132. doi:10.1016/j.jphotobiol.2017.11.009
  • Nair M, Elizabeth E. Applications of titania nanotubes in bone biology. J Nanosci Nanotechno. 2015;15(2):939–955. doi:10.1166/jnn.2015.9771
  • Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Edit. 2011;50(13):2904–2939.
  • Macak JM, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid St M. 2007;11(1–2):3–18. doi:10.1016/j.cossms.2007.08.004
  • Gibran K, Ibadurrahman M. Effect of electrolyte type on the morphology and crystallinity of TiO2 nanotubes from Ti-6Al-4V anodization. Iop C Ser Earth Env. 2018;105:012038.
  • Gong D, Grimes CA, Varghese OK, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16(12):3331–3334. doi:10.1557/JMR.2001.0457
  • Lai YK, Gao XF, Zhuang HF, Huang JY, Lin CJ, Jiang L. Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv Mater. 2009;21(37):3799–3803. doi:10.1002/adma.v21:37
  • Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Edit. 2005;44(14):2100–2102. doi:10.1002/anie.200462459
  • Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta. 2005;50(18):3679–3684. doi:10.1016/j.electacta.2005.01.014
  • Cheong YL, Yam FK, Ng SW, Hassan Z, Ng SS, Low IM. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization. J Porous Mat. 2015;22(6):1437–1444. doi:10.1007/s10934-015-0024-8
  • Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Edit. 2005;44(45):7463–7465. doi:10.1002/anie.200502781
  • Paulose M, Peng L, Popat KC, et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membrane Sci. 2008;319(1–2):199–205. doi:10.1016/j.memsci.2008.03.050
  • Richter C, Wu Z, Panaitescu E, Willey RJ, Menon L. Ultrahigh-aspect-ratio titania nanotubes. Adv Mater. 2007;19(7):946. doi:10.1002/adma.200602389
  • Arita NK, Shinonaga Y, Nishino M. Plasma-based fluorine ion implantation into dental materials for inhibition of bacterial adhesion. Dent Mater J. 2006;25(4):684–692.17338301
  • Shinonaga Y, Arita K. Antibacterial effect of acrylic dental devices after surface modification by fluorine and silver dual-ion implantation. Acta Biomater. 2012;8(3):1388–1393. doi:10.1016/j.actbio.2011.09.01721971415
  • Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J. Prosthetic joint infection risk after TKA in the medicare population. Clin Orthop Relat Res. 2010;468(1):52–56. doi:10.1007/s11999-009-1013-519669386
  • Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008;466(7):1710–1715. doi:10.1007/s11999-008-0209-418421542
  • Yang Y, Ao HY, Yang SB, et al. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int J Nanomed. 2016;11:2223–2234.
  • Sun L, Xu JL, Sun ZH, et al. Decreased porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study. Int J Nanomed. 2018;13:6769–6777. doi:10.2147/IJN.S175865
  • Ivanova EP, Truong VK, Wang JY, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26(3):1973–1982. doi:10.1021/la902623c19842625
  • Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mat Sci Eng C-Mater. 2017;76:1401–1412. doi:10.1016/j.msec.2017.02.150
  • Deng Y, Sun MZ, Shaevitz JW. Measuring peptidoglycan elasticity and stress-stiffening of live bacterial cells. Biophys J. 2011;100(3):514–515. doi:10.1016/j.bpj.2010.12.3012
  • Pogodin S, Hasan J, Baulin VA, et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J. 2013;104(4):835–840. doi:10.1016/j.bpj.2012.12.04623442962
  • Mediaswanti K. Influence of physicochemical aspects of substratum nanosurface on bacterial attachment for bone implant applications. J Nanotechnol. 2016. doi:10.1155/2016/5026184
  • Atefyekta S, Ercan B, Karlsson J, et al. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomed. 2016;11:977–990.
  • Simi VS, Rajendran N. Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotube arrays for biomedical applications. Mater Charact. 2017;129:67–79. doi:10.1016/j.matchar.2017.04.019
  • Su EP, Justin DE, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018;100B(1):9–16. doi:10.1302/0301-620X.100B1.BJJ-2017-0551.R1
  • Mitik-Dineva N, Wang J, Truong VK, et al. Escherichia coli, pseudomonas aeruginosa, and staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol. 2009;58(3):268–273. doi:10.1007/s00284-008-9320-819020934
  • Radtke A, Topolski A, Jedrzejewski T, et al. The bioactivity and photocatalytic properties of titania nanotube coatings produced with the use of the low-potential anodization of Ti6Al4V alloy surface. Nanomaterials. 2017;7:8. doi:10.3390/nano7120458
  • Lewandowska Z, Piszczek P, Radtke A, Jedrzejewski T, Kozak W, Sadowska B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci-Mater M. 2015;26:4. doi:10.1007/s10856-015-5495-2
  • Shi XG, Xu QA, Tian A, et al. Antibacterial activities of TiO2 nanotubes on porphyromonas gingivalis. RSC Adv. 2015;5(43):34237–34242. doi:10.1039/C5RA00804B
  • Pawlik A, Jarosz M, Syrek K, Sulka GD. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers. Colloids Surf B Biointerfaces. 2017;152:95–102. doi:10.1016/j.colsurfb.2017.01.01128088017
  • Liu DH, He CR, Liu ZT, Xu WD. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int J Nanomed. 2017;12:5461–5471. doi:10.2147/IJN.S137137
  • Aguilera-Correa JJ, Doadrio AL, Conde A, et al. Antibiotic release from F-doped nanotubular oxide layer on TI6AL4V alloy to decrease bacterial viability. J Mater Sci Mater Med. 2018;29(8):118. doi:10.1007/s10856-018-6119-430030636
  • Wang JX, Li JH, Qian S, et al. Antibacterial surface design of titanium-based biomaterials for enhanced bacteria-killing and cell-assisting functions against periprosthetic joint infection. Acs Appl Mater Inter. 2016;8(17):11162–11178. doi:10.1021/acsami.6b02803
  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21:7. doi:10.3390/molecules21070836
  • Zhu C, Zhang WW, Fang SY, et al. Antibiotic peptide-modified nanostructured titanium surface for enhancing bactericidal property. J Mater Sci. 2018;53(8):5891–5908. doi:10.1007/s10853-017-1669-2
  • Li T, Wang N, Chen S, Lu R, Li HY, Zhang ZT. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. Int J Nanomed. 2017;12:2995–3007. doi:10.2147/IJN.S128775
  • Lin WT, Tan HL, Duan ZL, et al. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Int J Nanomed. 2014;9:1213–1228.
  • Caliskan N, Bayram C, Erdal E, Karahaliloglu Z, Denkbas EB. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C Mater Biol Appl. 2014;35:100–105. doi:10.1016/j.msec.2013.10.03324411357
  • Huang L, Chen J, Li XF, et al. Polymethacrylic acid encapsulated TiO2 nanotubes for sustained drug release and enhanced antibacterial activities. New J Chem. 2019;43(4):1827–1837. doi:10.1039/C8NJ04568B
  • Zhang T, Liu Y, Zhang FF, Xiao XF. Polylysine-modified titania nanotube arrays for local drug delivery. Micro Nano Lett. 2018;13(1):93–95. doi:10.1049/mnl.2017.0312
  • Hamlekhan A, Sinha-Ray S, Takoudis C, et al. Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. J Phys D Appl Phys. 2015;48:27. doi:10.1088/0022-3727/48/27/275401
  • Peng LL, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA. Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett. 2009;9(5):1932–1936. doi:10.1021/nl900105219323554
  • Shi LH, Xu H, Liao XM, et al. Fabrication of two-layer nanotubes with the pear-like structure by an in-situ voltage up anodization and the application as a drug delivery platform. J Alloy Compd. 2015;647:590–595. doi:10.1016/j.jallcom.2015.06.015
  • Zhang Y, Lan Z, Bo L, Yong H. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. Acs Appl Mater Inter. 2017;9(11):9449–9461. doi:10.1021/acsami.7b00322
  • Gulati K, Kant K, Findlay D, Losic D. Periodically tailored titania nanotubes for enhanced drug loading and releasing performances. J Mater Chem B. 2015;3(12):2553–2559. doi:10.1039/C4TB01882F
  • Simovic S, Losic D, Vasilev K. Controlled drug release from porous materials by plasma polymer deposition. Chem Commun (Camb). 2010;46(8):1317–1319. doi:10.1039/b919840g20449289
  • Kazek-Kesik A, Nosol A, Plonka J, et al. PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Mat Sci Eng C-Mater. 2019;94:998–1008. doi:10.1016/j.msec.2018.10.049
  • Sun SJ, Zhang YL, Zeng DL, Zhang SM, Zhang FQ, Yu WQ. PLGA film/Titanium nanotubues as a sustained growth factor releasing system for dental implants. J Mater Sci-Mater M. 2018;29:9. doi:10.1007/s10856-018-6138-1
  • Wang TT, Weng ZY, Liu XM, Yeung KWK, Pan HB, Wu SL. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioact Mater. 2017;2(1):44–50. doi:10.1016/j.bioactmat.2017.02.00129744410
  • Shen J, Jin B, Qi YC, Jiang QY, Gao XF. Carboxylated chitosan/silver-hydroxyapatite hybrid microspheres with improved antibacterial activity and cytocompatibility. Mat Sci Eng C-Mater. 2017;78:589–597. doi:10.1016/j.msec.2017.03.100
  • Yan YJ, Zhang XJ, Huang Y, Ding QQ, Pang XF. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci. 2014;314:348–357. doi:10.1016/j.apsusc.2014.07.027
  • Hu X, Xu R, Yu X, et al. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO2 nanotubes. Biomed Mater. 2018;13(4):045015. doi:10.1088/1748-605X/aac1a329714709
  • Lin WT, Zhang YY, Tan HL, et al. Inhibited bacterial adhesion and biofilm formation on quaternized chitosan-loaded titania nanotubes with various diameters. Materials. 2016;9:3. doi:10.3390/ma9030155
  • Liu P, Hao YS, Zhao YC, Yuan Z, Ding Y, Cai KY. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Colloid Surf B. 2017;160:110–116. doi:10.1016/j.colsurfb.2017.08.044
  • Mokhtari H, Ghasemi Z, Kharaziha M, Karimzadeh F, Alihosseini F. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: structural and biological properties. Appl Surf Sci. 2018;441:138–149. doi:10.1016/j.apsusc.2018.01.314
  • Sallem F, Boudon J, Heintz O, Severin I, Megriche A, Millot N. Synthesis and characterization of chitosan-coated titanate nanotubes: towards a new safe nanocarrier. Dalton T. 2017;46(44):15386–15398. doi:10.1039/C7DT03029K
  • Mohan L, Anandan C, Rajendran N. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan. Int J Biol Macromol. 2016;93:1633–1638. doi:10.1016/j.ijbiomac.2016.04.03427086292
  • Rapoport N, Pitt WG, Sun H, Nelson JL. Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release. 2003;91(1–2):85–95.12932640
  • Aw MS, Addai-Mensah J, Losic D. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun. 2012;48(27):3348–3350. doi:10.1039/c2cc17690d
  • Aw MS, Simovic S, Addai-Mensah J, Losic D. Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs. J Mater Chem. 2011;21(20):7082–7089. doi:10.1039/c0jm04307a
  • Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res Int. 2018;25(11):10362–10370. doi:10.1007/s11356-017-9367-928600792
  • Zhang YX, Dong CF, Yang SF, et al. Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect. J Biomater Appl. 2018;32(9):1289–1299. doi:10.1177/088532821875553829417864
  • Ulfahl IA, Bachtiar BM, Murnandityas AR. Synthesis and characterization of Ag-Doped TiO2 nanotubes on Ti-6A1-4V and Ti-6A1-7Nb alloy. AIP Conf Proc. 2018;1964:020008.
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi:10.1016/j.micpath.2017.11.01329146498
  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72. doi:10.1016/j.micpath.2018.02.00829427709
  • Suganthy N, Sri Ramkumar V, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res Int. 2018;25(11):10418–10433. doi:10.1007/s11356-017-9789-428762049
  • Wang GM, Feng HQ, Jin WH, et al. Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Appl Surf Sci. 2017;414:230–237. doi:10.1016/j.apsusc.2017.04.053
  • Murphin Kumar PS, MubarakAli D, Saratale RG, et al. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microb Pathog. 2017;113:68–73. doi:10.1016/j.micpath.2017.10.03229056495
  • Srinivasan M, Venkatesan M, Arumugam V, et al. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem. 2019;80:197–202. doi:10.1016/j.procbio.2019.02.010
  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, LewisOscar F, Pugazhendhi A. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B Biol. 2019;192:74–82. doi:10.1016/j.jphotobiol.2018.12.025
  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B Biol. 2019;190:86–97. doi:10.1016/j.jphotobiol.2018.11.014
  • Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M. Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb Pathog. 2018;122:84–89. doi:10.1016/j.micpath.2018.06.01629894807
  • Fathima JB, Pugazhendhi A, Venis R. Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog. 2017;110:245–251. doi:10.1016/j.micpath.2017.06.03928666841
  • Vassallo J, Besinis A, Boden R, Handy RD. The minimum inhibitory concentration (MIC) assay with Escherichia coil: an early tier in the environmental hazard assessment of nanomaterials? Ecotoxicol Environ Saf. 2018;162:633–646. doi:10.1016/j.ecoenv.2018.06.08530033160
  • Shuai CJ, Shuai CY, Feng P, Gao CD, Peng SP, Yang YW. Antibacterial capability, physicochemical properties, and biocompatibility of nTiO(2) incorporated polymeric scaffolds. Polymers-Basel. 2018;10:3.
  • Zhu Y, Cao HL, Qiao SC, et al. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants. Int J Nanomed. 2015;10:6659–6674. doi:10.2147/IJN.S92110
  • Yavari SA, Loozen L, Paganelli FL, et al. Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. Acs Appl Mater Inter. 2016;8(27):17080–17089. doi:10.1021/acsami.6b03152
  • Uhm SH, Song DH, Kwon JS, Lee SB, Han JG, Kim KN. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. J Biomed Mater Res B. 2014;102(3):592–603. doi:10.1002/jbm.b.33038
  • Tian T. Preparation and antibacterial bioactivity of Ti-base titania nanotube arrays. Key Eng Mater. 2014;609–610:435–441. doi:10.4028/www.scientific.net/KEM.609-610.435
  • Li GZ, Zhao QM, Yang HL, Cheng L. Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays. Mater Res-Ibero-Am J. 2016;19(3):735–740.
  • Wei LY, Wang HF, Wang ZQ, Yu MY, Chen SG. Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions. RSC Adv. 2015;5(91):74347–74352. doi:10.1039/C5RA12404B
  • Yuan Z, Liu P, Hao YS, Ding Y, Cai KY. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Colloid Surf B. 2018;171:597–605. doi:10.1016/j.colsurfb.2018.07.064
  • Xu JW, Xu N, Zhou T, et al. Polydopamine coatings embedded with silver nanoparticles on nanostructured titania for long-lasting antibacterial effect. Surf Coat Tech. 2017;320:608–613. doi:10.1016/j.surfcoat.2016.10.065
  • Wang HF, Wei LY, Wang ZQ, Chen SG. Preparation, characterization and long-term antibacterial activity of Ag-poly(dopamine)-TiO2 nanotube composites. RSC Adv. 2016;6(17):14097–14104. doi:10.1039/C5RA22061K
  • Jia ZJ, Xiu P, Li M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials. 2016;75:203–222. doi:10.1016/j.biomaterials.2015.10.03526513414
  • Liu Q, Li M, Jia ZJ, et al. Effect of dopamine on the TiO2 nanotubes loaded with Ag nanoparticles. Rare Metal Mat Eng. 2014;43:276–280.
  • Yang Y, Zhang YM, Hu R, et al. Antibacterial and cytocompatible AgNPs constructed with the assistance of Mefp-1 for orthopaedic implants. RSC Adv. 2017;7(61):38434–38443. doi:10.1039/C7RA06449G
  • Uhm SH, Lee SB, Song DH, Kwon JS, Han JG, Kim KN. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications. J Nanosci Nanotechnol. 2014;14(10):7847–7854. doi:10.1166/jnn.2014.941225942879
  • Uhm SH, Kwon JS, Song DH, et al. Long-term antibacterial performance and bioactivity of plasma-engineered Ag-NPs/TiO2 nanotubes for bio-implants. J Biomed Nanotechnol. 2016;12(10):1890–1906.29359906
  • Zhang LC, Zhang LH, Yang Y, et al. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes. J Biomed Mater Res B. 2016;104(5):1004–1012. doi:10.1002/jbm.b.33454
  • Roguska A, Pisarek M, Belcarz A, et al. Improvement of the bio-functional properties of TiO2 nanotubes. Appl Surf Sci. 2016;388:775–785. doi:10.1016/j.apsusc.2016.03.128
  • Chernozem RV, Surmeneva MA, Krause B, et al. Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: structure, composition and antibacterial assay. Mat Sci Eng C-Mater. 2019;97:420–430. doi:10.1016/j.msec.2018.12.045
  • Mei SL, Wang HY, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials. 2014;35(14):4255–4265. doi:10.1016/j.biomaterials.2014.02.00524565524
  • Ercan B, Taylor E, Alpaslan E, Webster TJ. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology. 2011;22(29):295102. doi:10.1088/0957-4484/22/29/29510221673387
  • Liu HL, Hou XG, Sun TT, et al. Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes. Surf Coat Tech. 2019;359:468–475. doi:10.1016/j.surfcoat.2018.12.108
  • Wang GM, Feng HQ, Hu LS, et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging. Nat Commun. 2018;9. doi:10.1038/S41467-018-04317-229339724
  • Qian W, Yan C, He DF, et al. pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater. 2018;69:256–264. doi:10.1016/j.actbio.2018.01.02229374599
  • Zhuk I, Jariwala F, Attygalle AB, Wu Y, Libera MR, Sukhishvili SA. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano. 2014;8(8):7733–7745. doi:10.1021/nn500674g25093948
  • Ma LW, Liu MZ, Liu HL, Chen J, Cui DP. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres. Int J Pharm. 2010;385(1–2):86–91. doi:10.1016/j.ijpharm.2009.10.03719879345
  • Tao B, Deng Y, Song L, et al. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement. Colloids Surf B Biointerfaces. 2019;177:242–252. doi:10.1016/j.colsurfb.2019.02.01430763789
  • Dong YW, Ye H, Liu Y, et al. pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic approach to control peri-implant infection. Colloid Surf B. 2017;158:127–136. doi:10.1016/j.colsurfb.2017.06.034
  • Zhang T, Xie CL, Liu Y, Zhang FF, Xiao XF. pH-responsive drug release system of Cu2+-modified ammoniated TiO2 nanotube arrays. Mater Lett. 2018;215:95–98. doi:10.1016/j.matlet.2017.12.080
  • Xiang YM, Liu XM, Mao CY, et al. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mat Sci Eng C-Mater. 2018;85:214–224. doi:10.1016/j.msec.2017.12.034
  • Wang TT, Liu XM, Zhu YZ, et al. Metal Ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants. Acs Biomater Sci Eng. 2017;3(5):816–825. doi:10.1021/acsbiomaterials.7b00103
  • Cai KY, Jiang F, Luo Z, Chen XY. Temperature-responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater. 2010;12(9):B565–B570. doi:10.1002/adem.201080015
  • Shen XK, Zhang F, Li K, et al. Cecropin B loaded TiO2 nanotubes coated with hyaluronidase sensitive multilayers for reducing bacterial adhesion. Mater Design. 2016;92:1007–1017. doi:10.1016/j.matdes.2015.12.126
  • Wu YH, Long YB, Li QL, et al. Layer-by-Layer (LBL) self-assembled biohybrid nanomaterials for efficient antibacterial applications. Acs Appl Mater Inter. 2015;7(31):17255–17263. doi:10.1021/acsami.5b04216
  • Haas S, Hain N, Raoufi M, et al. Enzyme degradable polymersomes from hyaluronic acid-block-poly(epsilon-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromolecules. 2015;16(3):832–841. doi:10.1021/bm501729h25654495
  • Yuan Z, Huang SZ, Lan SX, et al. Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo. J Mater Chem B. 2018;6(48):8090–8104. doi:10.1039/C8TB01918E
  • Bariana M, Aw MS, Moore E, Voelcker NH, Losic D. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomedicine-Uk. 2014;9(8):1263–1275. doi:10.2217/nnm.13.93