202
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Pyridine azo disperse dye derivatives and their selenium nanoparticles (SeNPs): synthesis, fastness properties, and antimicrobial evaluations

, , ORCID Icon, & ORCID Icon
Pages 7903-7918 | Published online: 27 Sep 2019

References

  • Fadda AA, El-Habbal MM. Ring opening and transamination of pyridinium salt. Indian J Chem. 1986;25B(1):194–200.
  • Fadda AA, Elagizy SA. Synthesis of azodisperse dyes with pyridine ring for dyeing polyester fibres: Part II. Indian J Fibre Text. 1989;14(1):177–187.
  • Fadda AA, Hanna MA, Girges MM. New dyestuffs for polyester fibres-synthesis and comparative tinctorial behaviour of 3-alkyl-4-arylliydrazone-n]-picolinol-2-pyrazolin-5-ones and their isomeric pyrid-3-and 4-yl analogues. J Chem Technol Biotechnol. 1992;55(1):9–16. doi:10.1002/jctb.280550103
  • Fadda AA, Ali MM, Fouda A. Synthesis of 3-aryl-5-[6-(α-picolyl)rhodanines and 3-aryl-5-(2-pyridylmethylene)rhodanine and their dyeing performance on acetate and/or other of fibres. Indian J Fibre Text. 1993;18(1):151–155.
  • Fadda AA, Ali MM, Etman HA, Fouda A. Synthesis of 3-aryl-5-[2′(α-pyridophthaionyl)rhodanines and their dyeing performance on acetate and/or other fibres. Indian J Fibre Text. 1995a;20(2):108–111.
  • Bach V, Hansen G, Lamm G, Sens R. Acylphenyl)azo]pyridone disperse dyes and their use. Eur Pat. 1991;Appl:413229.
  • Sakoma KJ, Bello KA, Yakubu MK. Synthesis of some azo disperse dyes from 1-substituted 2-hydroxy-6-pyridone derivatives and their colour assessment on polyester fabric. Open J Appl Sci. 2012;2:54–59. doi:10.4236/ojapps.2012.21006
  • Chien CC, Wang IJ. Synthesis of some pyridone azo dyes from 1-substituted 2-hydroxy-6- pyridone derivatives and their colour assessment. Dyes Pigments. 1991;15(1):69–82. doi:10.1016/0143-7208(91)87008-B
  • Ertan N, Gurkan P. Synthesis and properties of some azo pyridone dyes and their Cu(II) complexes. Dyes Pigments. 1997;33:137–147. doi:10.1016/S0143-7208(96)00044-7
  • Ashkar SM, El-Apasery MA, Touma MM, Elnagdi MH. Synthesis of some novel biologically active disperse dyes derived from 4-methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydropyridine-3-carbonitrile as coupling component and their colour assessment on polyester fabrics. Molecules. 2012;17:8822–8831. doi:10.3390/molecules1708882222832883
  • El-Sayed HA, Moustafa AH, El-Torky AE, Abd El-Salam EA. A series of pyridines and pyridine based sulfa-drug as antimicrobial agents: design, synthesis and antimicrobial activity. Russ J Gen Chem. 2017;87(10):2401–2408. doi:10.1134/S107036321710022X
  • Bhardwaj V, Noolvi MN, Jalhan S, Patel HM. Synthesis, and antimicrobial evaluation of new pyridine imidazo [2,1b]-1,3,4-thiadiazole derivatives. J Saudi Chem Soc. 2016;20(Suppl1):S406–S410. doi:10.1016/j.jscs.2012.12.007
  • Elkanzi NAA, Bakr RB, Ghoneim AA. Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano[2,3-b]pyridine and Pyrrolo[2,3-b]pyrano[2.3-d]pyridine derivatives. J Heterocyclic Chem. 2018;56(2):406–416. doi:10.1002/jhet.3412
  • El-Sayed EH, Fadda AA. Synthesis and antimicrobial activity of some novel bis polyfunctional pyridine, pyran, and thiazole derivatives. J Heterocyclic Chem. 2018;55(10):2251–2260. doi:10.1002/jhet.3276
  • Dang T, Nizamov IS, Salikhov RZ, et al. Synthesis and characterization of pyridoxine, nicotine and nicotinamide salts of dithiophosphoric acids as antibacterial agents against resistant wound infection. Bioorg Med Chem. 2019;27(1):100–109. doi:10.1016/j.bmc.2018.11.01730503413
  • Badr MH, Rostom SAF, Radwan MF. Novel polyfunctional pyridines as anticancer and antioxidant agents. synthesis, biological evaluation and in Silico ADME-T study. Chem Pharm Bull. 2017;65(5):442–454. doi:10.1248/cpb.c16-0076128458366
  • Gueiffier A, Mavel S, Lhassani M, et al. Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J Med Chem. 1998;41(25):5108–5112. doi:10.1021/jm981051y9836626
  • Helal MH, El-Awdan SA, Salem MA, et al. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:764–773. doi:10.1016/j.saa.2014.06.14525150427
  • Mojarrab M, Soltani R, Aliabadi A. Pyridine based chalcones: synthesis and evaluation of antioxidant activity of 1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one derivatives. Jundishapur J Nat Pharm Prod. 2013;8(3):125–130. doi:10.5812/jjnpp.24624201
  • Yee CK, Ulman A, Ruiz JD, Parikh A, White H, Rafailovich M. Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles: chain packing and bond nature. Langmuir. 2003;19(22):9450–9458. doi:10.1021/la020628i
  • Jana NR, Pal T. Redox catalytic property of still-growing and final palladium particles: acomparative study. Langmuir. 1999;15(10):3458–3463. doi:10.1021/la981512i
  • Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev. 1993;93(1):267–300. doi:10.1021/cr00017a013
  • Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir. 2001;17(5):1800–1802. doi:10.1021/la000862d
  • Kometani N, Tsubonishi M, Fujita T, Asami K, Yonezawa Y. Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir. 2001;17(3):578–580. doi:10.1021/la0013190
  • Strimbu L, Liu J, Kaifer AE. Cyclodextrin-capped palladium nanoparticles as catalysts for the suzuki reaction. Langmuir. 2003;19(2):483–485. doi:10.1021/la026550n
  • Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–896. doi:10.1021/nn800072t19206485
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–651.12204596
  • Das J, Han JW, Choi YJ, et al. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism. Sci Rep. 2016;6:29197. doi:10.1038/srep2919727380727
  • Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298(5601):2176–2179. doi:10.1126/science.107722912481134
  • Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787–792. doi:10.1126/science.106092812161643
  • Sangomla S, Saifi MA, Khurana A, Godugu C. Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol. 2018;47:53–62. doi:10.1016/j.jtemb.2018.01.01629544808
  • Saifi MA, Sangomla S, Khurana A, Godugu C. Protective effect of Nanoceria on cisplatin-induced nephrotoxicity by amelioration of oxidative stress and pro-inflammatory mechanisms. Biol Trace Elem Res. 2019;189(1):145–156. doi:10.1007/s12011-018-1457-030047078
  • Kumari P, Saifi MA, Khurana A, Godugu C. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Biol. 2018;50:198–208. doi:10.1016/j.jtemb.2018.07.01130262280
  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–812. doi:10.1016/j.biopha.2018.12.14630616079
  • Kamal T, Ul-Islam M, Khan SB, Asiri AM. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int J Biol Macromol. 2015;81:584–590. doi:10.1016/j.ijbiomac.2015.08.06026321421
  • Khan SB, Ali F, Kamal T, Anwar Y, Asiri AM. CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int J Biol Macromol. 2016;88:113–119. doi:10.1016/j.ijbiomac.2016.03.02626993528
  • Khan SA, Khan SB, Kamal T, Asiri AM, Akhtar K. Recent development of chitosan nanocomposites for environmental applications. Recent Pat Nanotechnol. 2016;10(3):181–188. doi:10.2174/187221051066616042914533927136929
  • Ahmed MS, Kamal T, Khan SA, et al. Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr Nanosci. 2016;12(5):569–575. doi:10.2174/1573413712666160204000517
  • Kavitha T, Haider S, Kamal T, Ul-Islam M. Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: antibacterial activity and mechanism. J Alloy Compd. 2017;704:296–302. doi:10.1016/j.jallcom.2017.01.306
  • Kamal T, Ali N, Naseem AA, Khan SB, Asiri AM. Polymer nanocomposite membranes for antifouling nanofiltration. Recent Pat Nanotechnol. 2016;10(3):189–201. doi:10.2174/187221051066616042914570427136927
  • Haider A, Haider S, Kang I-K, et al. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int J Biol Macromol. 2018;108:455–461. doi:10.1016/j.ijbiomac.2017.12.02229222019
  • Pervaiz M, Ahmad I, Yousaf M, et al. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:642–649. doi:10.1016/j.saa.2018.05.05729880252
  • Abdallah AEM, Elgemeie GH. Design, docking, synthesis and antimicrobial evaluation of some novel pyrazolo[1,5-a]pyrimidines and their corresponding cycloalkane ring-fused derivatives as purine analogues. Drug Des Devel Ther. 2018;12:1785–1798. doi:10.2147/DDDT.S159310
  • Abdallah AEM, Mohareb RM, Khalil EM, Elshamy MAMA. Synthesis of novel heterocyclic compounds incorporate 4,5,6,7-tetrahydrobenzo[b]thiophene together with their cytotoxic evaluations. Chem Pharm Bull. 2017;65:469–477. doi:10.1248/cpb.c16-0092528458368
  • Abdallah AEM, Helal MHE, Elakabawy NII. Heterocyclization, dyeing applications and anticancer evaluations of benzimidazole derivatives: novel synthesis of thiophene, triazole and pyrimidine derivatives. Egypt J Chem. 2015;58:699–719. doi:10.21608/EJCHEM.2015.1015
  • Abdallah AEM, Mohareb RM. Uses of 4,4-dicyano-3-phenyl-but-3-enoic acid phenylamide for the synthesis of new compounds: antimicrobial and textile finishing evaluations. Pigm Res Tech. 2019;48(2):89–107. doi:10.1108/PRT-11-2017-0085
  • Mohareb RM, Mahmoud AE, Abdelaziz MA. New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-b]pyridine, and thiazole derivatives together with their anti-tumor evaluations. Med Chem Res. 2014;23:564–579. doi:10.1007/s00044-013-0664-7
  • Mohareb RM, Abdallah AEM, Mohamed AA. Synthesis of novel thiophene, thiazole and coumarin derivatives based on benzimidazole nucleus and their cytotoxicity and toxicity evaluations. Chem Pharm Bull. 2018;66(3):309–318. doi:10.1248/cpb.c17-0092229491264
  • Helal MH. Synthesis and characterization of a new series of pyridinone azo dyes for dyeing of synthetic fibers. Pigm Res Tech. 2004;33(3):165–171. doi:10.1108/03699420410537287
  • Dwivedi C, Shah CP, Singh K, Kumar M, Bajaj PN. An organic acid-induced synthesis and characterization of selenium nanoparticles. J Nanotechnol. 2011;2011:651971. doi:10.1155/2011/651971
  • Trotman ER. Dyeing and Chemical Technology of Textile Fibers. 6th ed. London, UK/ Melbourne, Australia/Auckland,NZ: John Wiley & Sons Inc; 1984:306–309.
  • Society of Dyer and Colourists. Standard Methods for the Determination of the Colour Fastness of Textiles and Leather. 4th ed. Bradford, England (UK): The England Society; 1978.
  • RY WU. Studies on the Streptomyces SC4. II, Taxonomical and biological characteristics of Streptomyces strain SC4. Bot Bull Acad Sin. 1984;25:111–123.
  • Cooper KE. The theory of antibiotic inhibition zones In: Analytical Microbiology. Kavanagh FBTAM, editor. London: Academic Press: New York; 1963:1–86.