97
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Multi-Walled Carbon Nanotubes (MWCNTs) Activate Apoptotic Pathway Through ER Stress: Does Surface Chemistry Matter?

, &
Pages 9285-9294 | Published online: 28 Nov 2019

References

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539. doi:10.1126/science.122245323372006
  • Liu L, Niu Z, Chen J. Flexible supercapacitors based on carbon nanotubes. Chinese Chem Lett. 2018;29:571–581. doi:10.1016/j.cclet.2018.01.013
  • Yang Y, Chen C, Hu J, Deng Y, Zhang Y, Yang D. High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chinese Chem Lett. 2018;29:1777–1780.
  • Hemasa AL, Naumovski N, Maher WA, Ghanem A. Application of carbon nanotubes in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Nanomaterials (Basel). 2017;7:E186. doi:10.3390/nano707018628718832
  • Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthcare Mater. 2018;7:e1800525. doi:10.1002/adhm.v7.20
  • Maas M. Carbon nanomaterials as antibacterial colloids. Materials (Basel). 2016;9:ma9080617. doi:10.3390/ma9080617
  • Cao Y, Gong Y, Liu L, et al. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol. 2017;37:1359–1369. doi:10.1002/jat.v37.1228383141
  • Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev. 2015;44:8174–8199. doi:10.1039/C5CS00499C26239875
  • Ajdary M, Moosavi MA, Rahmati M, et al. Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials (Basel). 2018;8:nano8090634. doi:10.3390/nano8090634
  • Deng C, Hao T, Li Z, Fan Q. Physicochemical properties that determine cellular transport of nanocarriers in vitro and in vivo. Curr Org Chem. 2016;20:1835–1848.
  • Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59:8149–8167. doi:10.1021/acs.jmedchem.5b0177027142556
  • Long J, Xiao Y, Liu L, Cao Y. The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs. J Nanobiotechnology. 2017;15:80. doi:10.1186/s12951-017-0318-x29126419
  • Zhao X, Chang S, Long J, Li J, Li X, Cao Y. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: the influence of diameters of MWCNTs. Food Chem Toxico. 2019;126:169–177. doi:10.1016/j.fct.2019.02.026
  • Hamilton RF, Wu Z, Mitra S, Holian A. The effects of varying degree of MWCNT carboxylation on bioactivity in various in vivo and in vitro exposure models. Int J Mol Sci. 2018;19:E354. doi:10.3390/ijms1902035429370073
  • Liu Z, Dong X, Song L, et al. Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway. J Biomed Mater Res A. 2014;102:665–673. doi:10.1002/jbm.a.v102.323554228
  • De Marchi L, Neto V, Pretti C, et al. Toxic effects of multi-walled carbon nanotubes on bivalves: comparison between functionalized and nonfunctionalized nanoparticles. Sci Total Environ. 2018;622–623:1532–1542. doi:10.1016/j.scitotenv.2017.10.031
  • Orecna M, De Paoli SH, Janouskova O, et al. Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles. Nanomedicine. 2014;10:939–948. doi:10.1016/j.nano.2014.02.00124566271
  • Moller P, Christophersen DV, Jensen DM, et al. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 2014;88:1939–1964.25212906
  • Cao Y, Long J, Liu L, et al. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci. 2017;186:33–42. doi:10.1016/j.lfs.2017.08.00328782531
  • Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol. 2019. doi:10.1002/jat.3817
  • Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–351. doi:10.1016/j.jconrel.2016.06.01727297779
  • Tucureanu V, Matei A, Avram AM. FTIR spectroscopy for carbon family study. Crit Rev Anal Chem. 2016;46:502–520. doi:10.1080/10408347.2016.115701326941009
  • Gutierrez-Hernandez JM, Ramirez-Lee MA, Rosas-Hernandez H, et al. Single-walled carbon nanotubes (SWCNTs) induce vasodilation in isolated rat aortic rings. Toxicol in Vitro. 2015;29:657–662. doi:10.1016/j.tiv.2015.02.00125681759
  • Chang S, Zhao X, Li S, et al. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes. Ecotoxicol Environ Saf. 2018;161:569–577. doi:10.1016/j.ecoenv.2018.06.02529929133
  • Yang H, Li J, Yang C, Liu H, Cao Y. Multi-walled carbon nanotubes promoted lipid accumulation in human aortic smooth muscle cells. Toxicol Appl Pharmacol. 2019;374:11–19. doi:10.1016/j.taap.2019.04.02231047983
  • Zhao C, Zhou Y, Liu L, et al. Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: possible role of lipophagy pathway. Food Chem Toxicol. 2018;121:65–71. doi:10.1016/j.fct.2018.08.03330138652
  • Abu GM, El-Magd MA. Effect of pristine and functionalized multiwalled carbon nanotubes on rat renal cortex. Acta Histochem. 2019;121:207–217. doi:10.1016/j.acthis.2018.12.00530591315
  • Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A. 2016;104:2881–2897. doi:10.1002/jbm.a.3580427301683
  • Guo YY, Zhang J, Zheng YF, Yang J, Zhu XQ. Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res. 2011;721:184–191. doi:10.1016/j.mrgentox.2011.01.01421296185
  • Eom HJ, Roca CP, Roh JY, et al. A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chem Biol Interact. 2015;239:153–163. doi:10.1016/j.cbi.2015.06.03126111764
  • Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med. 2012;63:317–328. doi:10.1146/annurev-med-043010-14474922248326
  • Long J, Ma W, Yu Z, Liu H, Cao Y. Multi-walled carbon nanotubes (MWCNTs) promoted lipid accumulation in THP-1 macrophages through modulation of endoplasmic reticulum (ER) stress. Nanotoxicology. 2019;13:938–951. doi:10.1080/17435390.2019.159720431012781
  • Gao S, Tang G, Hua D, et al. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B. 2019;7:709–729. doi:10.1039/C8TB02491J